Development of Silicone Rubber-Multiwalled Carbon Nanotube Composites for Strain-Sensing Applications: Morphological, Mechanical, Electrical, and Sensing Properties

材料科学 复合材料 硅橡胶 渗流阈值 碳纳米管 极限抗拉强度 渗透(认知心理学) 复合数 电导率 电介质 弹性体 纳米复合材料 硅酮 电阻率和电导率 化学 光电子学 物理化学 神经科学 电气工程 生物 工程类
作者
Sisanth Krishnageham Sidharthan,Jibin Keloth Paduvilan,Prajitha Velayudhan,Nandakumar Kalarikkal,Szczepan Zapotoczny,Sabu Thomas
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:6 (6): 4406-4417 被引量:3
标识
DOI:10.1021/acsaelm.4c00480
摘要

This study presents a comprehensive investigation on the fabrication and characterization of piezoresistive elastomeric strain sensors using multiwalled carbon nanotubes (MWCNTs) incorporated into a silicone rubber matrix. Through meticulous experimentation and theoretical modeling, the study elucidates the intricate relationship between MWCNT concentration, mechanical properties, and electrical conductivity within the composite materials. The research reveals that composite formulations with MWCNT concentrations slightly above the percolation threshold exhibit superior strain-sensing properties. Specifically, composites containing 2 phr of MWCNTs demonstrate a remarkable gauge factor of 225, indicating enhanced sensitivity compared with higher MWCNT loadings. Mechanical testing using a tensile testing machine elucidates the complex interplay between MWCNT loading and tensile properties. However, subsequent enhancements in tensile properties with increasing MWCNT content suggest improved dispersion and reinforcing effects, highlighting the potential for tailored mechanical performance. The investigation of DC conductivity demonstrates a significant increase with rising MWCNT concentrations, indicative of the formation of conductive networks as MWCNTs reach the percolation threshold. Enhanced charge transport and constructive interface interactions facilitate efficient electron flow through the composite, which is crucial for applications requiring electrical conductivity. Moreover, the analysis of dielectric permittivity reveals its concentration-dependent increase, attributed to the large surface area of MWCNTs promoting stronger interactions with the matrix and enhanced polarization under electric fields. Drastic changes in AC conductivity at lower frequency levels within the percolation region suggest influences of dielectric relaxation, polarization effects, and formation of conductive paths. This study underscores the potential of MWCNTs-silicone rubber composites as versatile materials for advanced strain-sensing applications, offering tunable mechanical and electrical properties tailored to specific requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhh完成签到,获得积分20
刚刚
CS发布了新的文献求助30
1秒前
1秒前
bkagyin应助夕荀采纳,获得10
2秒前
刘西西发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
开朗小雯子完成签到,获得积分10
3秒前
黑猫发布了新的文献求助10
3秒前
hhhhh发布了新的文献求助10
4秒前
冷傲博关注了科研通微信公众号
5秒前
勤劳梦凡发布了新的文献求助10
5秒前
Elin完成签到,获得积分10
5秒前
sheep完成签到,获得积分20
5秒前
探寻完成签到,获得积分10
5秒前
6秒前
Reef驳回了冰魂应助
7秒前
及尔完成签到,获得积分10
7秒前
东十八发布了新的文献求助30
7秒前
木湾发布了新的文献求助30
7秒前
金金完成签到,获得积分10
7秒前
要受到80斤完成签到,获得积分10
7秒前
郭子仪发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
兴奋海雪完成签到,获得积分10
9秒前
9秒前
10秒前
跳跃完成签到,获得积分10
10秒前
Qoo发布了新的文献求助30
10秒前
10秒前
腾飞完成签到,获得积分10
11秒前
sheep发布了新的文献求助10
12秒前
领导范儿应助萌兴采纳,获得10
12秒前
12秒前
夕荀发布了新的文献求助10
13秒前
小二郎应助萤火采纳,获得10
13秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831979
求助须知:如何正确求助?哪些是违规求助? 3374351
关于积分的说明 10484424
捐赠科研通 3094186
什么是DOI,文献DOI怎么找? 1703366
邀请新用户注册赠送积分活动 819406
科研通“疑难数据库(出版商)”最低求助积分说明 771488