Optimisation of spatiotemporal context-constrained full-view area coverage deployment in camera sensor networks via quantum annealing

软件部署 背景(考古学) 计算机科学 量子 量子退火 无线传感器网络 模拟退火 地图学 计算机视觉 数据挖掘 地理 人工智能 计算机网络 算法 量子计算机 物理 考古 量子力学 操作系统
作者
Jie Li,Zhenqiang Li,Yao Long,Ke Wang,Jialin Li,Yao Lu,Chuli Hu
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:38 (9): 1827-1855 被引量:2
标识
DOI:10.1080/13658816.2024.2358045
摘要

Full-view coverage of a space area with a camera sensor network (CSN) is key to monitoring tasks like security monitoring. Unlike traditional CSN challenges that focus on mere target detection, the full-view area coverage problem (FVACP) demands recognition of targets irrespective of their locations or orientations. However, prior approaches often neglect real-world spatiotemporal context constraints like buildings and pedestrian dynamics, leading to inefficient CSN deployment. Moreover, FVACP's complexity, being an NP-hard issue, underscores the need for effective optimisation strategies. Recently, quantum annealing (QA) has emerged as a promising solution, which potentially outperforms classical computing in optimisation tasks. Therefore, this study proposes a QA-based FVACP optimisation framework. It addresses spatial constraints by optimising candidate deployment points and tackles temporal constraints by optimising sensor orientations. These optimisation tasks are converted into quadratic unconstrained binary optimisation problems, which are suitable for QA techniques and benchmarking against classical methods. The effectiveness of the framework is validated through facial recognition-oriented experiments. Results demonstrate not only efficient CSN deployment with larger benefits and fewer cameras but also confirm the superiority of QA over classical computing given that it delivers approximate optimum outcomes across various scenarios. Consequently, CSN monitoring capabilities in real-world applications can be enhanced.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的代真完成签到,获得积分10
1秒前
3秒前
鲁路修发布了新的文献求助10
4秒前
5秒前
陈醒醒完成签到,获得积分10
5秒前
liyf完成签到,获得积分10
5秒前
zho发布了新的文献求助30
10秒前
虚幻的KC完成签到,获得积分10
11秒前
apzxh发布了新的文献求助10
11秒前
大个应助acc采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得156
15秒前
zzzq应助科研通管家采纳,获得10
15秒前
t通应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
乐乐应助陈锦辞采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
TigerOvO应助科研通管家采纳,获得10
15秒前
Gauss应助科研通管家采纳,获得30
16秒前
华仔应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
完美世界应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
深情安青应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
柚C美式应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
lalala应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976