Identification of a signature based on non‐apoptotic regulatory cell death to improve prognosis prediction in acute myeloid leukaemia

肿瘤科 埃罗替尼 医学 免疫疗法 克拉斯 内科学 髓样 癌症 基因签名 癌症研究 生物 基因 表皮生长因子受体 结直肠癌 基因表达 生物化学
作者
Yu Zheng,Xiangqin Weng,Dong Hu,Jing He
出处
期刊:British Journal of Haematology [Wiley]
卷期号:201 (1): 95-105 被引量:3
标识
DOI:10.1111/bjh.18601
摘要

Although anti-apoptotic cell death is a common feature of cancer and non-apoptotic regulatory cell death (RCD) is highly correlated with cancer progression and response to therapy, its prognostic role in patients with acute myeloid leukaemia (AML) is unknown. The RNA sequence and clinical data from AML patients were downloaded from the TCGA and GEO databases. The prognostic characteristics of non-apoptotic RCD-related genes (NRGs) were determined by Cox and LASSO regression analysis. Thirteen NRG signatures were identified as independent prognostic parameters in patients with AML that outperformed other prognostic models. Higher NRG scores were associated with shorter survival and less retention of tumour mutations. Although patients with high NRG risk have abundant signalling pathways for cell adhesion, cytokine upregulation, and cellular defence responses, patients with low NRG risk may benefit the most from immunotherapy. Specifically, patients with high NRG score may benefit from treatment with anti-EGFR and CDK2 inhibitors, including erlotinib and roscovitine. The NPM1 and FLT3 mutant cell lines undergo alterations after multiple drug treatments. Our established NRG signature and scoring highlight its vital clinical significance, emphasize the inevitability of stratifying treatment for different mutation subtypes and provide new ideas to guide personalized immunotherapy strategies for AML patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助樊舒豪采纳,获得10
刚刚
思源应助smz采纳,获得10
刚刚
1秒前
ltz发布了新的文献求助10
1秒前
AeroY完成签到,获得积分10
1秒前
无缺完成签到,获得积分10
1秒前
健忘傲柏发布了新的文献求助10
1秒前
2秒前
2秒前
Ava应助YYYY采纳,获得10
3秒前
huagelihai发布了新的文献求助10
4秒前
4秒前
知足的憨人丫丫完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
dagejing4055完成签到,获得积分10
6秒前
7秒前
agosto发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
Nothing1024给Nothing1024的求助进行了留言
8秒前
领导范儿应助DMMM采纳,获得10
8秒前
ltz完成签到,获得积分10
8秒前
Jasper应助天涯明月不熬夜采纳,获得10
8秒前
8秒前
未月初二发布了新的文献求助10
9秒前
Lxy发布了新的文献求助10
9秒前
王景完成签到,获得积分20
9秒前
zyy发布了新的文献求助10
10秒前
10秒前
cly发布了新的文献求助10
10秒前
ztt发布了新的文献求助10
11秒前
科研通AI5应助CCC采纳,获得10
12秒前
机智的乌发布了新的文献求助10
12秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839133
求助须知:如何正确求助?哪些是违规求助? 3381599
关于积分的说明 10518877
捐赠科研通 3100943
什么是DOI,文献DOI怎么找? 1707880
邀请新用户注册赠送积分活动 821988
科研通“疑难数据库(出版商)”最低求助积分说明 773084