Prediction of soccer clubs’ league rankings by machine learning methods: The case of Turkish Super League

均方误差 联盟 机器学习 土耳其 人工智能 统计 数学 人工神经网络 计算机科学 工程类 语言学 物理 哲学 天文
作者
Abdullah Erdal Tümer,Zeki Akyıldız,Aytek Hikmet Güler,Esat Kaan Saka,Riccardo Ievoli,Lucio Palazzo,Filipe Manuel Clemente
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part P: Journal Of Sports Engineering And Technology [SAGE Publishing]
卷期号:: 175433712211404-175433712211404 被引量:1
标识
DOI:10.1177/17543371221140492
摘要

The aim of this research is to predict league rankings through various machine learning models using technical and physical parameters. This study followed a longitudinal observational analytical design. The SENTIO Sports optical tracking system was used to measure the physical demands and technical practices of the players in all matches. Then, the data regarding the last three seasons of the Turkish Super League (2015–2016, 2016−2017, and 2017−2018), was collected. In this research, league rankings were estimated using three machine learning methods: Artificial Neural Networks (ANN), Radial Basis Function (RBFN), Multiple Linear Regression (MLR) with technical and physical parameters of all seasons. Performances were evaluated through R 2 , Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). Prediction results of the models are the following: ANN Model; R 2 = 0.60, RMSE = 3.7855 and MAE = 2.9139, RBFN Model; R 2 = 0.26, MAE = 3.6292 and RMSE = 4.5168, MLR Model; R 2 = 0.46, MAE = 3.4859 and RMSE = 4.2064. These results showed that ANN can be used as a successful tool to predict league rankings. In the light of this research, coaches and athletic trainers can organize their training in a way that affects the technical and physical parameters to change the results of the competition. Thus, it will be possible for teams to have a better place in the league-end success ranking.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助Strike采纳,获得10
1秒前
jjjjjjjj发布了新的文献求助10
2秒前
爆米花应助dd采纳,获得10
3秒前
醉熏的小懒猪完成签到,获得积分10
3秒前
手握灵珠常奋笔完成签到,获得积分10
3秒前
3秒前
求助文献完成签到,获得积分10
3秒前
支焱发布了新的文献求助10
4秒前
4秒前
asdfqwer应助没有花活儿采纳,获得10
4秒前
杰克发布了新的文献求助10
5秒前
Alvin完成签到,获得积分10
5秒前
李锐发布了新的文献求助10
6秒前
李一意完成签到,获得积分10
6秒前
7秒前
黄bb应助歪瑞古德采纳,获得10
7秒前
7秒前
7秒前
张祖伦发布了新的文献求助10
8秒前
隐形曼青应助重要手机采纳,获得10
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
Akim应助鲜艳的访风采纳,获得10
10秒前
张光光发布了新的文献求助10
10秒前
赘婿应助咸蛋黄豆腐采纳,获得10
11秒前
11秒前
华仔应助fighting采纳,获得10
11秒前
故事讲完啦完成签到,获得积分10
11秒前
sunny心晴完成签到 ,获得积分10
11秒前
怕黑的班完成签到,获得积分10
12秒前
杰克完成签到,获得积分10
12秒前
加绒完成签到,获得积分10
12秒前
打打应助aser采纳,获得10
12秒前
12秒前
12秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786411
求助须知:如何正确求助?哪些是违规求助? 3332144
关于积分的说明 10254163
捐赠科研通 3047524
什么是DOI,文献DOI怎么找? 1672571
邀请新用户注册赠送积分活动 801371
科研通“疑难数据库(出版商)”最低求助积分说明 760178