亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tribological performance study and prediction of copper coated by MoS2 based on GBRT method

摩擦学 往复运动 材料科学 摩擦系数 涂层 复合材料 磨损系数 摩擦系数 冶金 方位(导航) 地图学 地理
作者
Guoqing Wang,Yuling Ruan,Hongxing Wang,Gai Zhao,Xinxin Cao,Xingming Li,Qingjun Ding
出处
期刊:Tribology International [Elsevier]
卷期号:179: 108149-108149 被引量:24
标识
DOI:10.1016/j.triboint.2022.108149
摘要

Fabricating solid lubricating coating on the metal surface had been widely used due to excellent wear resistance. However, its tribological performance became rather complex under different working condition. In this study, we employed machine learning (ML) to predict their tribological properties after experimental investigations and molecular dynamics (MD) simulations. Firstly, copper coated by molybdenum disulfide (MoS2) was prepared with varying thicknesses. Then, their tribological properties were studied under different loads and reciprocating frequencies to explore the wear mechanism from both macroscopic scale and nano scale. Importantly, correlations between friction and wear of coatings with testing parameters were investigated by predicting Coefficient of Friction (COF) and wear rate based on ML algorithm of Gradient Boosting Regression Tree (GBRT). The results showed that the thicker coating exhibited a smaller friction coefficient and more severe wear owing to the low hardness, which was also demonstrated by experiments and MD simulations. The friction coefficient and wear increased with the increase of load, but only the friction coefficient growth with the increase of reciprocating frequency. In addition, the GBRT model can effectively predict the tribological properties of the MoS2 coating on the copper substrate and the prediction accuracy of friction coefficient and wear rate reached 94.6% and 96.3%, respectively. Furthermore, relative importance analysis revealed that load had the greatest effect both on predicting friction coefficient and wear rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
占囧发布了新的文献求助10
4秒前
完美世界应助不辣的皮特采纳,获得10
11秒前
Rory完成签到 ,获得积分10
25秒前
小蘑菇应助复杂元瑶采纳,获得10
36秒前
57秒前
Zp完成签到,获得积分10
59秒前
1分钟前
Zp发布了新的文献求助10
1分钟前
1分钟前
早日发文章完成签到,获得积分10
1分钟前
1分钟前
fx完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
小二郎应助霜降采纳,获得10
1分钟前
Jane完成签到,获得积分10
1分钟前
不辣的皮特完成签到,获得积分10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
霜降发布了新的文献求助10
1分钟前
1分钟前
冷静新烟发布了新的文献求助10
1分钟前
1分钟前
linyingo发布了新的文献求助10
1分钟前
linyingo完成签到,获得积分10
1分钟前
陈俊豪完成签到 ,获得积分10
2分钟前
2分钟前
天雨流芳完成签到 ,获得积分10
2分钟前
2分钟前
Tushar发布了新的文献求助10
2分钟前
2分钟前
2分钟前
cccc完成签到,获得积分10
2分钟前
3分钟前
ding应助cccc采纳,获得10
3分钟前
Alpha完成签到 ,获得积分10
3分钟前
激情的不弱完成签到 ,获得积分10
3分钟前
万能的悲剧完成签到 ,获得积分10
3分钟前
浮游应助cccc采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
英姑应助Bokuto采纳,获得10
3分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443972
求助须知:如何正确求助?哪些是违规求助? 4553602
关于积分的说明 14242702
捐赠科研通 4475381
什么是DOI,文献DOI怎么找? 2452379
邀请新用户注册赠送积分活动 1443266
关于科研通互助平台的介绍 1419035