Molecular dynamics simulation to reveal the transport mechanism of LiPF6 in ethylene carbonate + dimethylcarbonate binary solvent

碳酸乙烯酯 电解质 化学 碳酸二甲酯 电导率 分子动力学 溶剂 离子电导率 粘度 热力学 离子 无机化学 物理化学 计算化学 有机化学 物理 电极 甲醇
作者
Tetsu Kiyobayashi,Satoshi Uchida,Hiroyuki Ozaki,Kenji Kiyohara
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (7) 被引量:5
标识
DOI:10.1063/5.0164099
摘要

This paper presents the molecular dynamics simulation of 1 mol kg-1 LiPF6 in a binary solvent of ethylene carbonate (EC) and dimethylcarbonate, which is a representative electrolyte solution for lithium-ion batteries. The simulation successfully reproduced the diffusion coefficient, ionic conductivity, and shear viscosity as functions of EC content at 300 K, which had been experimentally determined in our previous study. The Yukawa potential was adopted to model intercharge interactions to reduce computational costs, which consequently allowed us to precisely calculate the conductivity and viscosity by directly integrating time-correlation functions without explicitly modeling the molecular polarization. Breaking down microscopic current correlation functions into components revealed that, whereas the cation-anion attractive interaction dominantly impedes the conduction when the EC content is low, it is the cation-cation and anion-anion repulsive interactions that reduce the conductivity at a high EC content. An analysis of the pressure correlations revealed that all components positively contribute to the viscosity in the binary solvent without the electrolyte. On the other hand, negative terms are observed in five out of six cross correlations in the presence of the electrolyte, implying that these correlations negatively contribute to the shear stress and entropy production, both of which are net positive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王洋洋完成签到 ,获得积分10
刚刚
1秒前
1秒前
奥奥没有利饼干完成签到 ,获得积分10
2秒前
3秒前
3秒前
allia完成签到 ,获得积分10
3秒前
子车友绿发布了新的文献求助10
4秒前
cherry发布了新的文献求助10
4秒前
小新AA发布了新的文献求助10
4秒前
5秒前
善学以致用应助aishaniya采纳,获得10
6秒前
咖啡头发发布了新的文献求助10
6秒前
7秒前
7秒前
Helper发布了新的文献求助10
8秒前
缓慢氧化完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
11秒前
缓慢氧化发布了新的文献求助10
11秒前
Cinema完成签到,获得积分10
12秒前
科研通AI5应助搞怪的茗采纳,获得10
13秒前
13秒前
13秒前
FashionBoy应助矮小的艳血采纳,获得10
14秒前
16秒前
16秒前
16秒前
重要灵寒发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
yujie发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923957
求助须知:如何正确求助?哪些是违规求助? 4194216
关于积分的说明 13027743
捐赠科研通 3966157
什么是DOI,文献DOI怎么找? 2173716
邀请新用户注册赠送积分活动 1191245
关于科研通互助平台的介绍 1100822