亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hierarchical Reinforcement Learning for Dynamic Autonomous Vehicle Navigation at Intelligent Intersections

强化学习 计算机科学 更安全的 图形 代表(政治) 智能交通系统 人机交互 人工智能 分布式计算 实时计算 运输工程 计算机安全 工程类 政治 政治学 法学 理论计算机科学
作者
Sun Qian,Le Zhang,Huan Yu,Weijia Zhang,Yu Mei,Hui Xiong
标识
DOI:10.1145/3580305.3599839
摘要

Recent years have witnessed the rapid development of the Cooperative Vehicle Infrastructure System (CVIS), where road infrastructures such as traffic lights (TL) and autonomous vehicles (AVs) can share information among each other and work collaboratively to provide safer and more comfortable transportation experience to human beings. While many efforts have been made to develop efficient and sustainable CVIS solutions, existing approaches on urban intersections heavily rely on domain knowledge and physical assumptions, preventing them from being practically applied. To this end, this paper proposes NavTL, a learning-based framework to jointly control traffic signal plans and autonomous vehicle rerouting in mixed traffic scenarios where human-driven vehicles and AVs co-exist. The objective is to improve travel efficiency and reduce total travel time by minimizing congestion at the intersections while guiding AVs to avoid the temporally congested roads. Specifically, we design a graph-enhanced multi-agent decentralized bi-directional hierarchical reinforcement learning framework by regarding TLs as manager agents and AVs as worker agents. At lower temporal resolution timesteps, each manager sets a goal for the workers within its controlled region. Simultaneously, managers learn to take the signal actions based on the observation from the environment as well as an intention information extracted from its workers. At higher temporal resolution timesteps, each worker makes rerouting decisions along its way to the destination based on its observation from the environment, an intention-enhanced manager state representation, and a goal from its present manager. Finally, extensive experiments on one synthetic and two real-world network-level datasets demonstrate the effectiveness of our proposed framework in terms of improving travel efficiency. © 2023 ACM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Viiigo采纳,获得10
26秒前
万邦德完成签到,获得积分10
33秒前
43秒前
归尘发布了新的文献求助10
48秒前
Jayzie完成签到 ,获得积分10
1分钟前
GingerF应助淡然的妙芙采纳,获得50
1分钟前
1分钟前
1分钟前
卑微学术人完成签到 ,获得积分10
1分钟前
2分钟前
Viiigo发布了新的文献求助10
2分钟前
棠七应助倪妮采纳,获得10
2分钟前
苏梗完成签到 ,获得积分10
2分钟前
认真的幻姬完成签到,获得积分10
2分钟前
3分钟前
movoandy发布了新的文献求助30
3分钟前
3分钟前
科研通AI2S应助倪妮采纳,获得10
3分钟前
科研通AI2S应助倪妮采纳,获得10
3分钟前
赘婿应助倪妮采纳,获得10
3分钟前
wanci应助倪妮采纳,获得10
3分钟前
无花果应助Dralee采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
路卡利欧完成签到 ,获得积分10
4分钟前
光亮的垣完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
丘比特应助movoandy采纳,获得10
4分钟前
4分钟前
automan发布了新的文献求助10
4分钟前
roe完成签到 ,获得积分20
4分钟前
4分钟前
automan完成签到,获得积分10
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
5分钟前
忧郁小鸽子完成签到,获得积分10
5分钟前
小刘完成签到,获得积分10
5分钟前
5分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104996
求助须知:如何正确求助?哪些是违规求助? 4315064
关于积分的说明 13443981
捐赠科研通 4143505
什么是DOI,文献DOI怎么找? 2270465
邀请新用户注册赠送积分活动 1272960
关于科研通互助平台的介绍 1210012