亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stacking Ensemble Learning–Based [18F]FDG PET Radiomics for Outcome Prediction in Diffuse Large B-Cell Lymphoma

人工智能 随机森林 集成学习 接收机工作特性 弥漫性大B细胞淋巴瘤 分割 计算机科学 机器学习 梯度升压 Boosting(机器学习) 核医学 模式识别(心理学) 医学 淋巴瘤 病理
作者
Shuilin Zhao,Jing Wang,Chentao Jin,Xiang Zhang,Chenxi Xue,Rui Zhou,Yan Zhong,Yuwei Liu,Xuexin He,Youyou Zhou,Caiyun Xu,Lixia Zhang,Wenbin Qian,Hong Zhang,Xiao‐Hui Zhang,Mei Tian
出处
期刊:The Journal of Nuclear Medicine [Society of Nuclear Medicine and Molecular Imaging]
卷期号:64 (10): 1603-1609 被引量:9
标识
DOI:10.2967/jnumed.122.265244
摘要

This study aimed to develop an analytic approach based on [18F]FDG PET radiomics using stacking ensemble learning to improve the outcome prediction in diffuse large B-cell lymphoma (DLBCL). Methods: In total, 240 DLBCL patients from 2 medical centers were divided into the training set (n = 141), internal testing set (n = 61), and external testing set (n = 38). Radiomics features were extracted from pretreatment [18F]FDG PET scans at the patient level using 4 semiautomatic segmentation methods (SUV threshold of 2.5, SUV threshold of 4.0 [SUV4.0], 41% of SUVmax, and SUV threshold of mean liver uptake [PERCIST]). All extracted features were harmonized with the ComBat method. The intraclass correlation coefficient was used to evaluate the reliability of radiomics features extracted by different segmentation methods. Features from the most reliable segmentation method were selected by Pearson correlation coefficient analysis and the LASSO (least absolute shrinkage and selection operator) algorithm. A stacking ensemble learning approach was applied to build radiomics-only and combined clinical-radiomics models for prediction of 2-y progression-free survival and overall survival based on 4 machine learning classifiers (support vector machine, random forests, gradient boosting decision tree, and adaptive boosting). Confusion matrix, receiver-operating-characteristic curve analysis, and survival analysis were used to evaluate the model performance. Results: Among 4 semiautomatic segmentation methods, SUV4.0 segmentation yielded the highest interobserver reliability, with 830 (66.7%) selected radiomics features. The combined model constructed by the stacking method achieved the best discrimination performance. For progression-free survival prediction in the external testing set, the areas under the receiver-operating-characteristic curve and accuracy of the stacking-based combined model were 0.771 and 0.789, respectively. For overall survival prediction, the stacking-based combined model achieved an area under the curve of 0.725 and an accuracy of 0.763 in the external testing set. The combined model also demonstrated a more distinct risk stratification than the International Prognostic Index in all sets (log-rank test, all P < 0.05). Conclusion: The combined model that incorporates [18F]FDG PET radiomics and clinical characteristics based on stacking ensemble learning could enable improved risk stratification in DLBCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Parwan关注了科研通微信公众号
5秒前
开心忆彤发布了新的文献求助10
8秒前
可乐不加冰完成签到 ,获得积分10
11秒前
19秒前
LC发布了新的文献求助10
24秒前
momo完成签到,获得积分10
26秒前
28秒前
xsy完成签到 ,获得积分10
31秒前
31秒前
量子星尘发布了新的文献求助150
32秒前
唐泽雪穗应助科研通管家采纳,获得10
33秒前
裂头蚴应助科研通管家采纳,获得10
33秒前
唐泽雪穗应助科研通管家采纳,获得10
34秒前
科研通AI5应助科研通管家采纳,获得10
34秒前
田様应助科研通管家采纳,获得30
34秒前
从容芮应助科研通管家采纳,获得50
34秒前
从容芮应助科研通管家采纳,获得50
34秒前
科研通AI5应助科研通管家采纳,获得30
34秒前
从容芮应助科研通管家采纳,获得50
34秒前
明理笑旋发布了新的文献求助10
37秒前
39秒前
41秒前
难过的踏歌完成签到,获得积分10
42秒前
凉白开发布了新的文献求助10
48秒前
凉白开完成签到,获得积分10
1分钟前
Cris发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Parwan发布了新的文献求助10
1分钟前
1分钟前
zangzyn完成签到 ,获得积分10
1分钟前
LLL完成签到,获得积分10
1分钟前
2分钟前
lim完成签到 ,获得积分10
2分钟前
公冶愚志发布了新的文献求助10
2分钟前
lim关注了科研通微信公众号
2分钟前
2分钟前
陈槊诸完成签到 ,获得积分10
2分钟前
ding应助公冶愚志采纳,获得150
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
The Chemical Industry in Europe, 1850–1914 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5160656
求助须知:如何正确求助?哪些是违规求助? 4354563
关于积分的说明 13558581
捐赠科研通 4198857
什么是DOI,文献DOI怎么找? 2302761
邀请新用户注册赠送积分活动 1302833
关于科研通互助平台的介绍 1248343