亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling students’ perceptions of artificial intelligence assisted language learning

期望理论 心理学 技术接受与使用的统一理论 利克特量表 社会影响力 结构方程建模 晋升(国际象棋) 比例(比率) 数学教育 社会心理学 发展心理学 计算机科学 机器学习 法学 物理 政治 量子力学 政治学
作者
Xin An,Ching Sing Chai,Yushun Li,Ying Zhou,Bingyu Yang
出处
期刊:Computer Assisted Language Learning [Routledge]
卷期号:: 1-22 被引量:59
标识
DOI:10.1080/09588221.2023.2246519
摘要

AbstractTo address the emerging trend of language learning with Artificial Intelligence (AI), this study explored junior and senior high school students' behavioral intentions to use AI in second language (L2) learning, and the roles of related technological, social, and motivational factors. An eight-factor survey was constructed using a 5-point Likert scale. A total of 524 valid responses were collected, including 280 responses from junior high school students and 244 from senior high school students. The reliability and validity of the scale were satisfactory. The technological and social factors include effort expectancy, performance expectancy, social influence, facilitating conditions of AI-assisted language learning (AILL), which were hypothesized to predict students' behavioral intention to use AILL with reference to the Unified Theory of Acceptance and Use of Technology (UTAUT) model. The motivational factors derived from L2 Motivational Self System theory (i.e. learning experience with AI, cultural interest with AI, and instrumentality-promotion with AI) were hypothesized to be intermediate variables between the technological and social factors and behavioral intention based on the extended UTAUT (UTAUT2). Therefore, UTAUT and the L2 Self System were combined according to UTAUT2 to construct the proposed model in this study, named AILL-Motivation-UTAUT model. The results of the structural equation models of AILL-Motivation-UTAUT showed that performance expectancy, cultural interest, and instrumentality-promotion could predict students' behavioral intention to use AILL for both junior and senior high students; effort expectancy and social influence could predict behavioral intention to use AILL only for junior high students, learning experience with AI could predict behavioral intention to use AILL only for senior high students, while facilitating conditions could not predict behavioral intention to use AILL for either group. The predictive power (80% for senior high students and 74% for junior high students) of the AILL-Motivation-UTAUT model in this research is higher than or equal to that of UTAUT2 (74%). In addition, this study found that the technological and social factors perceived by students would predict the motivation in AILL. The model verified in this study may inform future studies on AI integration for English as foreign language learning.Keywords: Artificial intelligenceLanguage learningUTAUTMotivationMiddle school Ethics approvals statementEthics approval for survey studies is not required in China.Disclosure statementNo potential conflict of interest was reported by the authors.Data availability statementThe datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.Additional informationFundingThis work was supported by Beijing Social Science Foundation (22JYA005).Notes on contributorsXin AnXin An is a PhD student of School of Educational Technology, Beijing Normal University. Her research interests are in the area of assessment of intelligent computer assisted language learning.Ching Sing ChaiChing Sing Chai is a professor at the Chinese University of Hong Kong. His research interests are in the areas of Technological Pedagogical Content Knowledge (TPACK), teachers' beliefs, design thinking and students' learning with ICT.Yushun LiYushun Li is the director of MOOCs Development Center, and is a professor at Beijing Normal University. His research areas are educational informalization, the assessment of Artificial intelligence in education (AIED), and design of online learning.Ying ZhouYing Zhou is an associate professor at Beijing Normal University. Her research interests are in the areas of Artificial intelligence in education (AIED), Technological Pedagogical Content Knowledge (TPACK), Science Education.Bingyu YangBingyu Yang is a master student of Beijing Normal University. Her research interests are in the areas of science education.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SMG完成签到 ,获得积分10
12秒前
WebCasa完成签到,获得积分10
28秒前
mama完成签到 ,获得积分10
38秒前
不知道完成签到,获得积分10
51秒前
52秒前
路过完成签到 ,获得积分10
1分钟前
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
我是老大应助soso采纳,获得10
3分钟前
3分钟前
xkkoala完成签到 ,获得积分10
3分钟前
hqh发布了新的文献求助10
3分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
kuoping完成签到,获得积分0
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Brain完成签到 ,获得积分10
5分钟前
黎子驳回了Hello应助
6分钟前
cccccl完成签到,获得积分10
6分钟前
黎子给黎子的求助进行了留言
7分钟前
thronn完成签到,获得积分10
7分钟前
8分钟前
追寻羿完成签到 ,获得积分10
9分钟前
GingerF完成签到,获得积分0
9分钟前
zzz完成签到,获得积分10
9分钟前
zzz发布了新的文献求助10
9分钟前
WebCasa应助科研通管家采纳,获得10
9分钟前
9分钟前
黎子发布了新的文献求助10
10分钟前
科研通AI2S应助jane123采纳,获得30
10分钟前
jane123发布了新的文献求助30
10分钟前
10分钟前
soso发布了新的文献求助10
10分钟前
moonlimb完成签到 ,获得积分10
10分钟前
Yani完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4086129
求助须知:如何正确求助?哪些是违规求助? 3625153
关于积分的说明 11497202
捐赠科研通 3338910
什么是DOI,文献DOI怎么找? 1835547
邀请新用户注册赠送积分活动 903909
科研通“疑难数据库(出版商)”最低求助积分说明 822005