Artificial intelligence for medicine: Progress, challenges, and perspectives

大数据 构造(python库) 人工智能 计算机科学 数据科学 人工智能应用 操作系统 程序设计语言
作者
Tao Huang,Huiyu Xu,Haitao Wang,Haofan Huang,Yongjun Xu,Baohua Li,Shenda Hong,Guoshuang Feng,Shuyi Kui,Guangjian Liu,Dehua Jiang,Zhicheng Li,Ye Li,Congcong Ma,Chunyan Su,Wei Wang,Rong Li,Puxiang Lai,Jie Qiao
标识
DOI:10.59717/j.xinn-med.2023.100030
摘要

<p>Artificial Intelligence (AI) has transformed how we live and how we think, and it will change how we practice medicine. With multimodal big data, we can develop large medical models that enables what used to unimaginable, such as early cancer detection several years in advance and effective control of virus outbreaks without imposing social burdens. The future is promising, and we are witnessing the advancement. That said, there are challenges that cannot be overlooked. For example, data generated is often isolated and difficult to integrate from both perspectives of data ownership and fusion algorithms. Additionally, existing AI models are often treated as black boxes, resulting in vague interpretation of the results. Patients also exhibit a lack of trust to AI applications, and there are insufficient regulations to protect patients�� privacy and rights. However, with the advancement of AI technologies, such as more sophisticated multimodal algorithms and federated learning, we may overcome the barriers posed by data silos. Deeper understanding of human brain and network structures can also help to unravel the mysteries of neural networks and construct more transparent yet more powerful AI models. It has become something of a trend that an increasing number of clinicians and patients will implement AI in their life and medical practice, which in turn can generate more data and improve the performance of models and networks. Last but not the least, it is crucial to monitor the practice of AI in medicine and ensure its equity, security, and responsibility.</p>

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wennuan0913完成签到 ,获得积分10
刚刚
刚刚
天天向上发布了新的文献求助10
刚刚
1秒前
1秒前
枕安发布了新的文献求助20
2秒前
2秒前
嘟嘟发布了新的文献求助10
2秒前
满家归寻发布了新的文献求助10
3秒前
天天快乐应助刻苦的发带采纳,获得10
4秒前
南浔完成签到 ,获得积分10
5秒前
5秒前
5秒前
Ava应助Shilly采纳,获得10
6秒前
fjh发布了新的文献求助10
7秒前
7秒前
南栀发布了新的文献求助30
7秒前
7秒前
只道寻常完成签到,获得积分10
8秒前
8秒前
文艺点点完成签到,获得积分10
8秒前
8秒前
传奇3应助无私语儿采纳,获得10
9秒前
zx完成签到 ,获得积分10
9秒前
小乐完成签到 ,获得积分10
10秒前
关包子完成签到,获得积分10
10秒前
微兔小妹完成签到 ,获得积分10
10秒前
赘婿应助Gao采纳,获得10
11秒前
研友_ZAeR6Z发布了新的文献求助10
11秒前
正直三颜完成签到,获得积分10
11秒前
孙皓然完成签到 ,获得积分10
12秒前
Aniee完成签到,获得积分10
12秒前
wuhoo完成签到,获得积分10
12秒前
刘清河完成签到 ,获得积分10
13秒前
zqingqing完成签到,获得积分10
13秒前
14秒前
自然的城发布了新的文献求助10
14秒前
斯文败类应助shl采纳,获得10
14秒前
关包子发布了新的文献求助10
14秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730