Hybrid flow-shop scheduling in collaborative manufacturing with a multi-crossover-operator genetic algorithm

渡线 调度(生产过程) 作业车间调度 操作员(生物学) 计算机科学 数学优化 遗传算法 流水车间调度 元启发式 算法 工程类 数学 人工智能 地铁列车时刻表 基因 转录因子 操作系统 生物化学 抑制因子 化学
作者
Yuxiang Guan,Yuning Chen,Zhongxue Gan,Zhuo Zou,Wenchao Ding,Hongda Zhang,Yi Liu,Chun Ouyang
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:36: 100514-100514 被引量:12
标识
DOI:10.1016/j.jii.2023.100514
摘要

Collaborative manufacturing systems have become a key component of Industry 4.0, supported by Industrial Information Integration Engineering (IIIE) applications. Efficient scheduling and coordination of manufacturing tasks are vital for these systems, directly impacting factory operational efficiency. One of the most prominent optimization problems in collaborative manufacturing is the hybrid flow shop scheduling problem with multiprocessor task (HFSPMT). This study proposes an improved genetic algorithm with multi-crossover-operator, called MCO-GA. MCO-GA introduces a novel crossover operator named SX, which demonstrates superior convergence efficiency compared to classical crossover operators. Furthermore,MCO-GA utilizes a probability selection method to autonomously choose between classical crossover operators and SX during the crossover stage. The effectiveness of MCO-GA is demonstrated through its successful application in solving a scheduling problem in a real-life wood manufacturing factory. Comparing MCO-GA with the state-of-the-art metaheuristic algorithms (HSA, OBL_HSA, and MGLS), it is observed that MCO-GA achieves significantly better average results in over 60% of instances. Additionally, MCO-GA outperforms OBL_HSA and MGLS in terms of computation time. These results highlight the effectiveness and efficiency of MCO-GA in solving the HFSPMT problem and its potential for improving scheduling and coordination in collaborative manufacturing systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
斯文败类应助乘一采纳,获得10
4秒前
上官若男应助mmol采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
liang完成签到 ,获得积分10
6秒前
7秒前
8秒前
SciGPT应助DJANGO采纳,获得10
8秒前
8秒前
情怀应助wodeqiche2007采纳,获得30
8秒前
YORLAN完成签到 ,获得积分10
9秒前
xiaobei完成签到,获得积分10
10秒前
BCS完成签到,获得积分10
10秒前
shi发布了新的文献求助10
11秒前
zeno123456完成签到,获得积分10
12秒前
我是老大应助摸鱼仙人采纳,获得10
13秒前
Lele完成签到,获得积分10
13秒前
平平完成签到,获得积分10
15秒前
15秒前
情怀应助科研通管家采纳,获得10
15秒前
霖昭应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
Catalina_S应助科研通管家采纳,获得10
15秒前
霖昭应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
霖昭应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
Catalina_S应助科研通管家采纳,获得10
16秒前
风清扬应助科研通管家采纳,获得10
16秒前
大胆笑翠应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
Orange应助科研通管家采纳,获得10
16秒前
Catalina_S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
16秒前
16秒前
17秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3879562
求助须知:如何正确求助?哪些是违规求助? 3422021
关于积分的说明 10727147
捐赠科研通 3146711
什么是DOI,文献DOI怎么找? 1736155
邀请新用户注册赠送积分活动 838240
科研通“疑难数据库(出版商)”最低求助积分说明 783642