A review on brain age prediction models

神经影像学 白质 脑老化 灰质 衰老的大脑 大脑活动与冥想 心理学 大脑大小 神经科学 医学 脑电图 认知 磁共振成像 放射科
作者
L.K. Soumya Kumari,R. Sundarrajan
出处
期刊:Brain Research [Elsevier BV]
卷期号:1823: 148668-148668 被引量:16
标识
DOI:10.1016/j.brainres.2023.148668
摘要

Brain age in neuroimaging has emerged over the last decade and reflects the estimated age based on the brain MRI scan from a person. As a person ages, their brain structure will change, and these changes will be exclusive to males and females and will differ for each. White matter and grey matter density have a deeper relationship with brain aging. Hence, if the white matter and grey matter concentrations vary, the rate at which the brain ages will also vary. Neurodegenerative illnesses can be detected using the biomarker known as brain age. The development of deep learning has made it possible to analyze structural neuroimaging data in new ways, notably by predicting brain ages. We introduce the techniques and possible therapeutic uses of brain age prediction in this cutting-edge review. Creating a machine learning regression model to analyze age-related changes in brain structure among healthy individuals is a typical procedure in studies focused on brain aging. Subsequently, this model is employed to forecast the aging of brains in new individuals. The concept of the "brain-age gap" refers to the difference between an individual's predicted brain age and their actual chronological age. This score may serve as a gauge of the general state of the brain's health while also reflecting neuroanatomical disorders. It may help differential diagnosis, prognosis, and therapy decisions as well as early identification of brain-based illnesses. The following is a summary of the many forecasting techniques utilized over the past 11 years to estimate brain age. The study's conundrums and potential outcomes of the brain age predicted by current models will both be covered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天的风儿甚是喧嚣完成签到,获得积分10
1秒前
爱吃冻梨发布了新的文献求助20
4秒前
4秒前
jying发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
glucose完成签到,获得积分10
9秒前
蒋时晏应助紧张的蘑菇采纳,获得30
10秒前
嘻嘻哈哈眼药水完成签到,获得积分10
11秒前
Andy完成签到 ,获得积分10
11秒前
李健应助忐忑的鬼神采纳,获得10
11秒前
allenise发布了新的文献求助10
12秒前
鄙视注册完成签到,获得积分10
13秒前
moiumuio完成签到,获得积分10
15秒前
淡定可乐完成签到,获得积分10
19秒前
20秒前
22秒前
沈海发布了新的文献求助10
25秒前
Carrie完成签到,获得积分10
26秒前
西米发布了新的文献求助10
27秒前
Iiirds完成签到 ,获得积分10
27秒前
温暖的碧蓉完成签到 ,获得积分10
28秒前
成就书雪完成签到,获得积分0
28秒前
lh完成签到 ,获得积分10
30秒前
冯二发布了新的文献求助10
30秒前
DRDOC完成签到,获得积分10
31秒前
上官翠花完成签到 ,获得积分10
31秒前
allenise完成签到,获得积分10
32秒前
心灵美的白卉完成签到,获得积分10
32秒前
韩_完成签到,获得积分10
33秒前
科研通AI5应助正直博涛采纳,获得10
33秒前
liushiyi完成签到,获得积分10
33秒前
呼呼呼完成签到,获得积分10
33秒前
领导范儿应助allenise采纳,获得10
35秒前
香蕉觅云应助sunshine999采纳,获得10
37秒前
JamesPei应助爱听歌笑寒采纳,获得10
37秒前
科研顺利完成签到 ,获得积分10
38秒前
wzx完成签到,获得积分10
40秒前
ccc完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779569
求助须知:如何正确求助?哪些是违规求助? 3325031
关于积分的说明 10221139
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668640
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758535