Establishing a Berry Sensory Evaluation Model Based on Machine Learning

粒子群优化 支持向量机 均方误差 人工神经网络 计算机科学 人工智能 卷积神经网络 机器学习 可靠性(半导体) 感觉系统 数学 统计 认知心理学 功率(物理) 物理 量子力学 心理学
作者
Minghao Liu,Minhua Liu,Lin Bai,Wei Shang,Runhan Ren,Zhiyao Zhao,Ying Sun
出处
期刊:Foods [MDPI AG]
卷期号:12 (18): 3502-3502 被引量:8
标识
DOI:10.3390/foods12183502
摘要

In recent years, people’s quality of life has increased, and the requirements for fruits have also become higher; blueberries are particularly popular because of their rich nutrients. In the blueberry industry chain, sensory evaluation is an important link in determining the quality of blueberries. Therefore, to make a more objective scientific evaluation of blueberry quality and reduce the influence of human factors, on the basis of traditional sensory evaluation methods, machine learning is introduced to establish a support vector regression prediction model optimized by the particle swarm algorithm. Ten physical and chemical flavor indices of blueberries (such as catalase, flavonoids, and soluble solids) were used as input data, and sensory evaluation scores were used as output data. Three different predictive models were applied and compared: a particle swarm optimization support vector machine, a convolutional neural network, and a long short-term memory network model. To ensure reliability, the experiments with each of the three models were repeated 20 times, and the mean of each index was calculated. The experimental results showed that the root mean square error and mean absolute error of the particle swarm optimization support vector machine were 0.45 and 0.40, respectively; these values were lower than those of the convolutional neural network (0.96 and 0.78, respectively) and the long short-term memory network (1.22 and 0.97, respectively). Hence, these results highlighted the superiority of the proposed model when sample data are limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jim luo完成签到,获得积分10
刚刚
华仔应助初秋采纳,获得10
刚刚
2秒前
Akim应助耍酷含羞草采纳,获得10
2秒前
dadabad发布了新的文献求助10
3秒前
4秒前
英姑应助photodetectors采纳,获得10
6秒前
流口水完成签到,获得积分10
7秒前
科研小白发布了新的文献求助20
7秒前
英俊的铭应助夕荀采纳,获得10
8秒前
乐空思应助科研通管家采纳,获得10
9秒前
黄bb应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
123应助科研通管家采纳,获得10
9秒前
黄bb应助科研通管家采纳,获得10
9秒前
坦率灵槐应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
123应助科研通管家采纳,获得10
9秒前
坦率灵槐应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得30
9秒前
干净寻冬应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
AneyWinter66应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
ccm应助科研通管家采纳,获得10
9秒前
坦率灵槐应助科研通管家采纳,获得10
9秒前
坦率灵槐应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
AneyWinter66应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
干净寻冬应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
华仔应助彩色橘子采纳,获得10
12秒前
干净的南风应助多米采纳,获得10
13秒前
binbin完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642496
求助须知:如何正确求助?哪些是违规求助? 4758935
关于积分的说明 15017747
捐赠科研通 4801078
什么是DOI,文献DOI怎么找? 2566357
邀请新用户注册赠送积分活动 1524465
关于科研通互助平台的介绍 1483995