模板
反应扩散系统
数学
类型(生物学)
扩散
有限差分
核(代数)
功能(生物学)
有限差分法
人工神经网络
三角函数
偏微分方程
微分方程
热方程
数学分析
应用数学
算法
计算机科学
人工智能
几何学
离散数学
物理
热力学
生物
进化生物学
生态学
计算科学
作者
Yongho Kim,Yongho Choi
标识
DOI:10.1016/j.camwa.2022.08.006
摘要
In this paper, we propose Five-point stencil CNN (FCNN) containing a five-point stencil kernel and a trainable approximation function. We consider reaction-diffusion type equations including heat, Fisher's, Allen-Cahn equations, and reaction-diffusion equations with trigonometric functions. Our proposed FCNN is trained well using few data and then can predict reaction-diffusion evolutions with unseen initial conditions. Also, our FCNN is trained well in the case of using noisy train data. We present various simulation results to demonstrate that our proposed FCNN is working well.
科研通智能强力驱动
Strongly Powered by AbleSci AI