Identification and validation of key biomarkers for the early diagnosis of diabetic kidney disease

小桶 计算生物学 Lasso(编程语言) 基因 微阵列 微阵列分析技术 生物信息学 生物信息学 生物 基因表达 基因本体论 计算机科学 遗传学 万维网
作者
Wei Yu,Ting Wang,Feng Wu,Yiding Zhang,Jin Shang,Zhanzheng Zhao
出处
期刊:Frontiers in Pharmacology [Frontiers Media]
卷期号:13 被引量:2
标识
DOI:10.3389/fphar.2022.931282
摘要

Background: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. This study explored the core genes and pathways associated with DKD to identify potential diagnostic and therapeutic targets. Methods: We downloaded microarray datasets GSE96804 and GSE104948 from the Gene Expression Omnibus (GEO) database. The dataset includes a total of 53 DKD samples and 41 normal samples. Differentially expressed genes (DEGs) were identified using the R package "limma". The Metascape database was subjected to Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to identify the pathway and functional annotations of DEGs. A WGCAN network was constructed, the hub genes in the turquoise module were screened, and the core genes were selected using LASSO regression to construct a diagnostic model that was then validated in an independent dataset. The core genes were verified by in vitro and in vivo experiments. Results: A total of 430 DEGs were identified in the GSE96804 dataset, including 285 upregulated and 145 downregulated DEGs. WGCNA screened out 128 modeled candidate gene sets. A total of eight genes characteristic of DKD were identified by LASSO regression to build a prediction model. The results showed accuracies of 99.15% in the training set (GSE96804) and 94.44% and 100%, respectively, in the test (GSE104948-GPL22945 and GSE104948-GPL24120). Three core genes (OAS1, SECTM1, and SNW1) with high connectivity were selected among the modeled genes. In vitro and in vivo experiments confirmed the upregulation of these genes. Conclusion: Bioinformatics analysis combined with experimental validation identified three novel DKD-specific genes. These findings may advance our understanding of the molecular basis of DKD and provide potential therapeutic targets for its clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助顺利的平松采纳,获得10
刚刚
biov发布了新的文献求助10
刚刚
三里墩头完成签到,获得积分10
1秒前
FashionBoy应助PanCiro采纳,获得10
1秒前
Leoniko发布了新的文献求助10
1秒前
123发布了新的文献求助10
2秒前
共享精神应助法鱿科采纳,获得30
2秒前
混沌完成签到,获得积分10
2秒前
小熊软糖完成签到,获得积分10
3秒前
罗Eason完成签到,获得积分10
3秒前
ccc完成签到,获得积分10
3秒前
小白发布了新的文献求助10
3秒前
3秒前
whatever举报chenchang求助涉嫌违规
4秒前
zhaohl发布了新的文献求助10
5秒前
有魅力的从凝完成签到,获得积分10
5秒前
fff发布了新的社区帖子
5秒前
云云完成签到,获得积分10
6秒前
llx发布了新的文献求助10
6秒前
6秒前
baodingning完成签到,获得积分10
7秒前
7秒前
李博文完成签到,获得积分10
8秒前
邓炎林完成签到 ,获得积分10
8秒前
9秒前
kikiii发布了新的文献求助10
10秒前
Master完成签到 ,获得积分10
10秒前
无情的幻嫣完成签到,获得积分10
10秒前
科研通AI5应助zhangluhang采纳,获得10
10秒前
小贺发布了新的文献求助10
11秒前
局外人完成签到,获得积分10
11秒前
6666发布了新的文献求助10
11秒前
[刘小婷]发布了新的文献求助10
12秒前
我是老大应助tmxx采纳,获得10
12秒前
超级如风完成签到,获得积分10
12秒前
李爱国应助剑影采纳,获得10
12秒前
小小柴完成签到,获得积分10
12秒前
飞鸟完成签到,获得积分10
13秒前
NICKPLZ完成签到,获得积分10
13秒前
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816117
求助须知:如何正确求助?哪些是违规求助? 3359667
关于积分的说明 10403987
捐赠科研通 3077496
什么是DOI,文献DOI怎么找? 1690307
邀请新用户注册赠送积分活动 813741
科研通“疑难数据库(出版商)”最低求助积分说明 767781