RingMo: A Remote Sensing Foundation Model With Masked Image Modeling

计算机科学 杠杆(统计) 人工智能 特征学习 机器学习 一般化 代表(政治) 深度学习 航空影像 领域(数学分析) 模式识别(心理学) 图像(数学) 数学分析 政治 法学 数学 政治学
作者
Xian Sun,Peijin Wang,Wanxuan Lu,Zicong Zhu,Xiaonan Lü,Qibin He,Junxi Li,Xuee Rong,Zhujun Yang,Hao Chang,Qinglin He,Guang Yang,Ruiping Wang,Jiwen Lu,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-22 被引量:125
标识
DOI:10.1109/tgrs.2022.3194732
摘要

Deep learning approaches have contributed to the rapid development of remote sensing (RS) image interpretation. The most widely used training paradigm is to use ImageNet pretrained models to process RS data for specified tasks. However, there are issues such as domain gap between natural and RS scenes and the poor generalization capacity of RS models. It makes sense to develop a foundation model with general RS feature representation. Since a large amount of unlabeled data is available, the self-supervised method has more development significance than the fully supervised method in RS. However, most of the current self-supervised methods use contrastive learning, whose performance is sensitive to data augmentation, additional information, and selection of positive and negative pairs. In this article, we leverage the benefits of generative self-supervised learning (SSL) for RS images and propose an RS foundation mo del framework called RingMo, which consists of two parts. First, a large-scale dataset is constructed by collecting two million RS images from satellite and aerial platforms, covering multiple scenes and objects around the world. Second, we propose an RS foundation model training method designed for dense and small objects in complicated RS scenes. We show that the foundation model trained on our dataset with RingMo method achieves state-of-the-art (SOTA) on eight datasets across four downstream tasks, demonstrating the effectiveness of the proposed framework. Through in-depth exploration, we believe it is time for RS researchers to embrace generative SSL and leverage its general representation capabilities to speed up the development of RS applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助南笛采纳,获得10
1秒前
strive完成签到,获得积分10
1秒前
sln完成签到,获得积分10
2秒前
Aaron完成签到,获得积分10
2秒前
科研通AI5应助现代白玉采纳,获得10
2秒前
lll发布了新的文献求助10
3秒前
AAA完成签到,获得积分10
3秒前
妙妙完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
hy_完成签到,获得积分10
5秒前
领导范儿应助wu采纳,获得10
5秒前
wqy发布了新的文献求助10
5秒前
5秒前
6秒前
jundading完成签到,获得积分10
7秒前
科目三应助简单的冬灵采纳,获得10
7秒前
7秒前
华仔应助puyehwu采纳,获得30
7秒前
暴富完成签到,获得积分10
8秒前
852应助杜杜采纳,获得10
8秒前
8秒前
9秒前
研友_LjDyNZ发布了新的文献求助10
10秒前
园游会发布了新的文献求助10
10秒前
hy_发布了新的文献求助10
10秒前
jiangjiang完成签到,获得积分10
11秒前
巷陌发布了新的文献求助10
11秒前
11秒前
12秒前
Orange应助慧慧采纳,获得10
12秒前
Ava应助yanjun_j采纳,获得10
12秒前
13秒前
15秒前
www发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Fatigue of Materials and Structures 260
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832129
求助须知:如何正确求助?哪些是违规求助? 3374463
关于积分的说明 10485185
捐赠科研通 3094316
什么是DOI,文献DOI怎么找? 1703421
邀请新用户注册赠送积分活动 819464
科研通“疑难数据库(出版商)”最低求助积分说明 771533