Swin-MFINet: Swin transformer based multi-feature integration network for detection of pixel-level surface defects

计算机科学 人工智能 像素 变压器 特征(语言学) 模式识别(心理学) 数据挖掘 计算机视觉 电气工程 电压 工程类 语言学 哲学
作者
Hüseyin Üzen,Muammer Türkoğlu,Berrin Yanıkoğlu,Davut Hanbay
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:209: 118269-118269 被引量:45
标识
DOI:10.1016/j.eswa.2022.118269
摘要

Automatic surface defect detection is critical for manufacturing industries, such as steel, fabric, and marble industries. This study proposes a Swin transformer-based model called Multi-Feature Integration Network (Swin-MFINet) for pixel-level surface defect detection. The proposed model consists of an encoder, a Swin transformer-based decoder, and Multi-Feature Integration (MFI) modules. In the encoder module of the proposed model, a pre-trained Inception network is used to extract key features from small-size datasets. In the decoder section, global semantic features are obtained from the initial features by using the Swin-transformer block, which is the newest transformer technology of today. In addition, the convolution layer is used in the last step of the decoder, since transformers are limited in acquiring small spatial details such as edges, colors, and textures, which are important in detecting some small defects. In the last module called MFI, feature maps from different decoder stages are combined, and the channel squeeze-spatial excitation block is applied to reveal important features. Finally, a prediction map is obtained by applying a convolution layer and sigmoid activation function to the MFI module output, respectively. The performance of proposed model is analyzed over MT and MVTec datasets containing surface defect images. The proposed model obtained mIoU scores of 81.37%, and 77.07% respectively, for these two datasets These results outperform the state-of-the-art for the surface defect detection problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助大闪电采纳,获得10
2秒前
刘小明完成签到,获得积分10
3秒前
馅饼完成签到,获得积分10
3秒前
duoduo完成签到,获得积分10
4秒前
Nancy发布了新的文献求助20
5秒前
Xenia完成签到 ,获得积分10
6秒前
钱烨华发布了新的文献求助20
8秒前
9秒前
萝卜脚踝完成签到,获得积分20
10秒前
10秒前
科研通AI5应助复杂念梦采纳,获得10
11秒前
13秒前
shuxue完成签到,获得积分10
14秒前
keke发布了新的文献求助20
14秒前
开朗以亦完成签到,获得积分10
15秒前
lemon完成签到,获得积分10
15秒前
毛毛妈完成签到,获得积分10
16秒前
嘀咕嘀咕发布了新的文献求助10
16秒前
ziliz完成签到,获得积分10
17秒前
Lucas应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
烟花应助科研通管家采纳,获得30
18秒前
传奇3应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
lilycat完成签到,获得积分10
19秒前
开朗以亦发布了新的文献求助10
19秒前
七月星河完成签到 ,获得积分10
20秒前
噜噜噜噜噜完成签到,获得积分10
25秒前
科研通AI2S应助keira采纳,获得10
27秒前
30秒前
30秒前
香蕉觅云应助坚强枫采纳,获得10
30秒前
35秒前
隐形曼青应助nancy采纳,获得10
35秒前
哈士轩完成签到,获得积分10
36秒前
ASHES发布了新的文献求助10
36秒前
张三完成签到,获得积分10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522