The Steel Surface Multiple Defect Detection and Size Measurement System Based on Improved YOLOv5

像素 编码器 刮擦 过程(计算) 特征(语言学) 计算机科学 人工智能 材料科学 语言学 操作系统 哲学
作者
Yiming Xu,Ziheng Ding,Li Wang,Kai Zhang,Le Tong
出处
期刊:Journal of Electrical and Computer Engineering [Hindawi Limited]
卷期号:2023: 1-16 被引量:6
标识
DOI:10.1155/2023/5399616
摘要

In the process of steel production, the defects on the surface of steel will adversely affect the subsequent processing of a product. Accurate detection of such defects is the key to improve production efficiency and economic benefits. In this paper, an end-to-end steel surface defect detection and size measurement system based on the YOLOv5 model is designed. Firstly, in consideration of the defect location and direction correlation in the production process, a coordinate attention mechanism is added at the head of YOLOv5 to strengthen the spatial correlation of the steel surface and an adaptive anchor box generation method based on defect shape difference feature is proposed, which realizes the detection of three main types of defects on the Pytorch deep learning framework. Secondly, BiFPN is used to strengthen the feature fusion and a transformer encoder is added to improve the performance of detecting small defects. Thirdly, calculate the conversion ratio between the pixel and the actual size according to the standard reference specimen and obtain the actual size through the pixel statistics of the defect area to achieve pixel level size measurement. Finally, the steel surface defect detection and size measurement system are designed in this paper, which consist of various hardware, related measurement, and detection algorithms. According to the experimental results, the comprehensive defect detection accuracy of this method reaches 93.6%, of which the scratch detection accuracy reaches 95.7%. The detection speed reaches 133 fps and the defect size measurement accuracy reaches 0.5 mm. Experimental result shows that the defect detection and size measurement system designed in this paper can accurately detect and measure various industrial production defects and can be applied to the actual production process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
eatme完成签到,获得积分10
刚刚
乐乐宝完成签到,获得积分10
1秒前
1秒前
1秒前
医疗搜救犬完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
小不点发布了新的文献求助10
4秒前
7秒前
茉莉花发布了新的文献求助10
7秒前
小王不会完成签到,获得积分10
7秒前
兔子完成签到 ,获得积分20
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
Luffy应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
白马非马完成签到 ,获得积分10
10秒前
粥粥应助科研通管家采纳,获得10
10秒前
Twonej应助科研通管家采纳,获得30
10秒前
wanci应助科研通管家采纳,获得30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729907
求助须知:如何正确求助?哪些是违规求助? 5320921
关于积分的说明 15317727
捐赠科研通 4876709
什么是DOI,文献DOI怎么找? 2619565
邀请新用户注册赠送积分活动 1569026
关于科研通互助平台的介绍 1525640