Integrating genome-wide polygenic risk scores and non-genetic risk to predict colorectal cancer diagnosis using UK Biobank data: population based cohort study

医学 生命银行 逻辑回归 置信区间 队列 优势比 结直肠癌 人口 遗传模型 弗雷明翰风险评分 全基因组关联研究 内科学 人口学 肿瘤科 生物信息学 癌症 遗传学 单核苷酸多态性 基因型 生物 环境卫生 疾病 基因 社会学
作者
Sarah Briggs,Philip Law,James E. East,Sarah Wordsworth,Malcolm G. Dunlop,Richard S. Houlston,Julia Hippisley‐Cox,Ian Tomlinson
标识
DOI:10.1136/bmj-2022-071707
摘要

Abstract Objective To evaluate the benefit of combining polygenic risk scores with the QCancer-10 (colorectal cancer) prediction model for non-genetic risk to identify people at highest risk of colorectal cancer. Design Population based cohort study. Setting Data from the UK Biobank study, collected between March 2006 and July 2010. Participants 434 587 individuals with complete data for genetics and QCancer-10 predictions were included in the QCancer-10 plus polygenic risk score modelling and validation cohorts. Main outcome measures Prediction of colorectal cancer diagnosis by genetic, non-genetic, and combined risk models. Using data from UK Biobank, six different polygenic risk scores for colorectal cancer were developed using LDpred2 polygenic risk score software, clumping, and thresholding approaches, and a model based on genome-wide significant polymorphisms. The top performing genome-wide polygenic risk score and the score containing genome-wide significant polymorphisms were combined with QCancer-10 and performance was compared with QCancer-10 alone. Case-control (logistic regression) and time-to-event (Cox proportional hazards) analyses were used to evaluate risk model performance in men and women. Results Polygenic risk scores derived using the LDpred2 program performed best, with an odds ratio per standard deviation of 1.584 (95% confidence interval 1.536 to 1.633), and top age and sex adjusted C statistic of 0.733 (95% confidence interval 0.710 to 0.753) in logistic regression models in the validation cohort. Integrated QCancer-10 plus polygenic risk score models out-performed QCancer-10 alone. In men, the integrated LDpred2 model produced a C statistic of 0.730 (0.720 to 0.741) and explained variation of 28.2% (26.3 to 30.1), compared with 0.693 (0.682 to 0.704) and 21.0% (18.9 to 23.1) for QCancer-10 alone. In women, the C statistic for the integrated LDpred2 model was 0.687 (0.673 to 0.702) and explained variation was 21.0% (18.7 to 23.7), compared with 0.645 (0.631 to 0.659) and 12.4% (10.3 to 14.6) for QCancer-10 alone. In the top 20% of individuals at highest absolute risk, the sensitivity and specificity of the integrated LDpred2 models for predicting colorectal cancer diagnosis was 47.8% and 80.3% respectively in men, and 42.7% and 80.1% respectively in women, with increases in absolute risk in the top 5% of risk in men of 3.47-fold and in women of 2.77-fold compared with the median. Illustrative decision curve analysis indicated a small incremental improvement in net benefit with QCancer-10 plus polygenic risk score models compared with QCancer-10 alone. Conclusions Integrating polygenic risk scores with QCancer-10 modestly improves risk prediction over use of QCancer-10 alone. Given that QCancer-10 data can be obtained relatively easily from health records, use of polygenic risk score in risk stratified population screening for colorectal cancer currently has no clear justification. The added benefit, cost effectiveness, and acceptability of polygenic risk scores should be carefully evaluated in a real life screening setting before implementation in the general population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助ff采纳,获得10
1秒前
迁就发布了新的文献求助10
1秒前
默默函完成签到,获得积分10
1秒前
1秒前
zoe完成签到,获得积分10
1秒前
1秒前
可爱的函函应助687采纳,获得10
3秒前
蛙蛙的呱呱完成签到,获得积分10
4秒前
默默函发布了新的文献求助10
5秒前
boyue完成签到,获得积分10
5秒前
6秒前
how发布了新的文献求助10
6秒前
WRECKIE完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
1199发布了新的文献求助30
7秒前
lan199623发布了新的文献求助10
7秒前
54完成签到,获得积分20
7秒前
犹豫幻丝发布了新的文献求助10
9秒前
科研通AI2S应助洋洋采纳,获得10
11秒前
11秒前
11秒前
Caism发布了新的文献求助10
11秒前
霸气的思柔完成签到,获得积分10
11秒前
11秒前
香蕉觅云应助啦啦啦啦采纳,获得10
12秒前
共享精神应助高兴的傲珊采纳,获得30
12秒前
muzi1998发布了新的文献求助10
13秒前
_ban发布了新的文献求助10
13秒前
稳重的紫易完成签到,获得积分10
14秒前
赘婿应助姝飞糊涂采纳,获得10
14秒前
16秒前
量子星尘发布了新的文献求助150
17秒前
缠在一起的数据线完成签到,获得积分10
17秒前
17秒前
科研通AI6应助xjm采纳,获得10
18秒前
平安喜乐发布了新的文献求助10
18秒前
19秒前
临渊发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
A Brief Primer on the Concept of the Neuroweapon for U.S. Military Medical Personnel 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4703991
求助须知:如何正确求助?哪些是违规求助? 4071181
关于积分的说明 12589128
捐赠科研通 3771786
什么是DOI,文献DOI怎么找? 2083375
邀请新用户注册赠送积分活动 1110579
科研通“疑难数据库(出版商)”最低求助积分说明 988367