Dietary metabolic signatures and cardiometabolic risk

医学 食品集团 糖尿病 2型糖尿病 危险系数 内科学 代谢物 体质指数 置信区间 生理学 内分泌学 环境卫生
作者
Ravi V. Shah,Lyn M. Steffen,Matthew Nayor,Jared P. Reis,David R. Jacobs,Norrina B. Allen,Donald M. Lloyd‐Jones,Katie A. Meyer,Joanne B. Cole,Paolo Piaggi,Ramachandran S. Vasan,Clary B. Clish,Venkatesh L. Murthy
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (7): 557-569 被引量:50
标识
DOI:10.1093/eurheartj/ehac446
摘要

Abstract Aims Observational studies of diet in cardiometabolic-cardiovascular disease (CM-CVD) focus on self-reported consumption of food or dietary pattern, with limited information on individual metabolic responses to dietary intake linked to CM-CVD. Here, machine learning approaches were used to identify individual metabolic patterns related to diet and relation to long-term CM-CVD in early adulthood. Methods and results In 2259 White and Black adults (age 32.1 ± 3.6 years, 45% women, 44% Black) in the Coronary Artery Risk Development in Young Adults (CARDIA) study, multivariate models were employed to identify metabolite signatures of food group and composite dietary intake across 17 food groups, 2 nutrient groups, and healthy eating index-2015 (HEI2015) diet quality score. A broad array of metabolites associated with diet were uncovered, reflecting food-related components/catabolites (e.g. fish and long-chain unsaturated triacylglycerols), interactions with host features (microbiome), or pathways broadly implicated in CM-CVD (e.g. ceramide/sphingomyelin lipid metabolism). To integrate diet with metabolism, penalized machine learning models were used to define a metabolite signature linked to a putative CM-CVD-adverse diet (e.g. high in red/processed meat, refined grains), which was subsequently associated with long-term diabetes and CVD risk numerically more strongly than HEI2015 in CARDIA [e.g. diabetes: standardized hazard ratio (HR): 1.62, 95% confidence interval (CI): 1.32–1.97, P < 0.0001; CVD: HR: 1.55, 95% CI: 1.12–2.14, P = 0.008], with associations replicated for diabetes (P < 0.0001) in the Framingham Heart Study. Conclusion Metabolic signatures of diet are associated with long-term CM-CVD independent of lifestyle and traditional risk factors. Metabolomics improves precision to identify adverse consequences and pathways of diet-related CM-CVD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Ericlibrave完成签到 ,获得积分10
刚刚
haha9haha完成签到,获得积分10
刚刚
顾矜应助典雅的沛柔采纳,获得10
刚刚
sunny完成签到,获得积分10
1秒前
浮游应助惜陌采纳,获得10
2秒前
2秒前
Yi发布了新的文献求助10
2秒前
4秒前
llb发布了新的文献求助10
4秒前
丘比特应助中文采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得30
5秒前
浮游应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
pluto应助科研通管家采纳,获得10
5秒前
Maestro_S应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得30
6秒前
共享精神应助科研通管家采纳,获得30
6秒前
今后应助科研通管家采纳,获得30
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5494816
求助须知:如何正确求助?哪些是违规求助? 4592556
关于积分的说明 14437818
捐赠科研通 4525439
什么是DOI,文献DOI怎么找? 2479434
邀请新用户注册赠送积分活动 1464210
关于科研通互助平台的介绍 1437185