Dietary metabolic signatures and cardiometabolic risk

医学 食品集团 糖尿病 2型糖尿病 危险系数 内科学 代谢物 弗雷明翰风险评分 体质指数 弗雷明翰心脏研究 置信区间 生理学 内分泌学 疾病 环境卫生
作者
Ravi Shah,Lyn M. Steffen,Matthew Nayor,Jared P. Reis,David R. Jacobs,Norrina B. Allen,Donald M. Lloyd‐Jones,Katie A. Meyer,Joanne B. Cole,Paolo Piaggi,Ramachandran S. Vasan,Clary B. Clish,Venkatesh L. Murthy
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:44 (7): 557-569 被引量:20
标识
DOI:10.1093/eurheartj/ehac446
摘要

Abstract Aims Observational studies of diet in cardiometabolic-cardiovascular disease (CM-CVD) focus on self-reported consumption of food or dietary pattern, with limited information on individual metabolic responses to dietary intake linked to CM-CVD. Here, machine learning approaches were used to identify individual metabolic patterns related to diet and relation to long-term CM-CVD in early adulthood. Methods and results In 2259 White and Black adults (age 32.1 ± 3.6 years, 45% women, 44% Black) in the Coronary Artery Risk Development in Young Adults (CARDIA) study, multivariate models were employed to identify metabolite signatures of food group and composite dietary intake across 17 food groups, 2 nutrient groups, and healthy eating index-2015 (HEI2015) diet quality score. A broad array of metabolites associated with diet were uncovered, reflecting food-related components/catabolites (e.g. fish and long-chain unsaturated triacylglycerols), interactions with host features (microbiome), or pathways broadly implicated in CM-CVD (e.g. ceramide/sphingomyelin lipid metabolism). To integrate diet with metabolism, penalized machine learning models were used to define a metabolite signature linked to a putative CM-CVD-adverse diet (e.g. high in red/processed meat, refined grains), which was subsequently associated with long-term diabetes and CVD risk numerically more strongly than HEI2015 in CARDIA [e.g. diabetes: standardized hazard ratio (HR): 1.62, 95% confidence interval (CI): 1.32–1.97, P < 0.0001; CVD: HR: 1.55, 95% CI: 1.12–2.14, P = 0.008], with associations replicated for diabetes (P < 0.0001) in the Framingham Heart Study. Conclusion Metabolic signatures of diet are associated with long-term CM-CVD independent of lifestyle and traditional risk factors. Metabolomics improves precision to identify adverse consequences and pathways of diet-related CM-CVD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林夏应助奋斗的萝采纳,获得10
刚刚
林夏应助奋斗的萝采纳,获得10
刚刚
羽客发布了新的文献求助10
刚刚
所所应助奋斗的萝采纳,获得10
刚刚
领导范儿应助奋斗的萝采纳,获得10
1秒前
所所应助奋斗的萝采纳,获得10
1秒前
静静子应助奋斗的萝采纳,获得10
1秒前
zzz完成签到,获得积分10
1秒前
那咋了完成签到,获得积分10
1秒前
3秒前
4秒前
嘿嘿嘿发布了新的文献求助10
7秒前
8R60d8应助舒心一兰采纳,获得10
8秒前
8秒前
gexzygg应助奋斗的萝采纳,获得10
8秒前
gexzygg应助奋斗的萝采纳,获得10
8秒前
科研通AI2S应助奋斗的萝采纳,获得10
8秒前
gexzygg应助奋斗的萝采纳,获得10
8秒前
9秒前
彭于彦祖应助长青采纳,获得10
9秒前
10秒前
10秒前
饼饼发布了新的文献求助10
10秒前
科研通AI5应助ldy采纳,获得10
10秒前
Elan完成签到 ,获得积分10
11秒前
小尘完成签到,获得积分10
12秒前
13秒前
冯岗发布了新的文献求助10
13秒前
欧尼熊发布了新的文献求助10
14秒前
14秒前
荷包蛋完成签到,获得积分10
14秒前
妮可粒子完成签到,获得积分10
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
15秒前
16秒前
一只小葵应助猜猜我是谁采纳,获得10
16秒前
蹦蹦发布了新的文献求助10
16秒前
二月why发布了新的文献求助10
17秒前
17秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Social Epistemology: The Niches for Knowledge and Ignorance 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4251765
求助须知:如何正确求助?哪些是违规求助? 3785085
关于积分的说明 11879967
捐赠科研通 3436181
什么是DOI,文献DOI怎么找? 1885648
邀请新用户注册赠送积分活动 937268
科研通“疑难数据库(出版商)”最低求助积分说明 843068