计算机科学
分割
人工智能
网(多面体)
特征提取
主管(地质)
编码器
特征(语言学)
模式识别(心理学)
频道(广播)
班级(哲学)
上下文图像分类
计算机视觉
图像(数学)
数学
语言学
操作系统
地貌学
地质学
哲学
计算机网络
几何学
作者
Chia-Shuo Chang,Tian‐Sheuan Chang,Jiun Lin Yan,Li‐Wei Ko
标识
DOI:10.1109/biocas54905.2022.9948588
摘要
Intracranial hemorrhages in head CT scans serve as a first line tool to help specialists diagnose different types. However, their types have diverse shapes in the same type but similar confusing shape, size and location between types. To solve this problem, this paper proposes an all attention U-Net. It uses channel attentions in the U-Net encoder side to enhance class specific feature extraction, and space and channel attentions in the U-Net decoder side for more accurate shape extraction and type classification. The simulation results show up to a 31.8\% improvement compared to baseline, ResNet50 + U-Net, and better performance than in cases with limited attention.
科研通智能强力驱动
Strongly Powered by AbleSci AI