An automated, high-performance approach for detecting and characterizing broccoli based on UAV remote-sensing and transformers: A case study from Haining, China

工作流程 遥感 天蓬 计算机科学 精准农业 稳健性(进化) RGB颜色模型 激光雷达 人工智能 深度学习 机器学习 地图学 地理 生态学 农业 数据库 基因 生物 生物化学
作者
Chengquan Zhou,Hongbao Ye,Dawei Sun,Jibo Yue,Guijun Yang,Jun Hu
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:114: 103055-103055 被引量:20
标识
DOI:10.1016/j.jag.2022.103055
摘要

Accurate canopy mapping and head-volume estimation of large areas of broccoli is an important prerequisite for precision farming since it provides important phenotypic traits associated with field management, environmental control, and yield prediction. Currently, the detection and characterization of broccoli mostly rely on ground surveys and human interpretation, which is often time- and labor-intensive. Recent developments based on unmanned aerial vehicle (UAV) remote sensing offer low cost, timely, and flexible data acquisition, thereby providing a potential alternative technique to enhance in situ field surveys. The combination of UAV data and deep learning has led to a series of breakthroughs in rapid and automated collection of simultaneous multisensor and multimodal plant phenotyping data. However, their application for monitoring broccoli remains problematic when faced with the significant spatial scale involved and the variety of vegetation species. To address this problem, we propose herein a fast and reliable semi-automatic workflow based on deep learning to process UAV RGB imagery and LiDAR point clouds and thereby remotely detect and characterize broccoli canopy and heads. First, we explore the use of TransUNet to differentiate canopy and non-canopy regions in RGB images at the individual-plant scale. The results demonstrate that TransUNet consistently achieves the highest accuracy (average returned Precision, Recall, F1 score, and IoU of 0.917, 0.864, 0.901, and 0.895, respectively) compared with three CNN-based and two shallow learning-based approaches. In addition, TransUNet performs best in terms of robustness against variations in training samples. Subsequently, to estimate the volume of broccoli heads, a point cloud transformer (PCT) network is developed for point cloud segmentation. Improving upon the results of three existing methods PointNet, PointNet++, and K-means that were applied to the same datasets, the best-performing PCT produced a precision of 0.914, an overall recall of 0.899, an overall F1 score of 0.901, and an overall IoU of 0.879. A regression analysis indicates that the PCT estimates had R2 = 0.875, RMSE = 18.62, and rRMSE = 3.64 %, which is also superior to the results from other comparison approaches. Collectively, the wide application of such technology would facilitate applied research in plant phenotyping and precision agro-ecological applications and field management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得30
1秒前
Akim应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
2秒前
冰魂应助科研通管家采纳,获得10
2秒前
2秒前
顾矜应助慵懒的树采纳,获得10
3秒前
4秒前
4秒前
SciGPT应助HHH采纳,获得10
5秒前
6秒前
QXS发布了新的文献求助10
7秒前
lll发布了新的文献求助10
9秒前
10秒前
复杂的雨寒完成签到,获得积分20
15秒前
16秒前
lindahuang发布了新的文献求助10
16秒前
16秒前
Pengh完成签到,获得积分10
18秒前
失眠醉易应助HJY采纳,获得20
18秒前
CipherSage应助gb采纳,获得10
19秒前
20秒前
慵懒的树发布了新的文献求助10
21秒前
26秒前
27秒前
27秒前
28秒前
苔藓发布了新的文献求助10
28秒前
Elio发布了新的文献求助10
28秒前
29秒前
30秒前
左旋多巴完成签到,获得积分10
30秒前
31秒前
31秒前
yangyuanhao完成签到,获得积分10
31秒前
zzz发布了新的文献求助10
33秒前
yydragen应助pure123采纳,获得30
33秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382151
关于积分的说明 10521656
捐赠科研通 3101616
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822278
科研通“疑难数据库(出版商)”最低求助积分说明 773223