Multimodal Vehicular Trajectory Prediction With Inverse Reinforcement Learning and Risk Aversion at Urban Unsignalized Intersections

弹道 计算机科学 强化学习 人工智能 工程类 运输工程 物理 天文
作者
Maosi Geng,Zeen Cai,Yizhang Zhu,Xiqun Chen,Der‐Horng Lee
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (11): 12227-12240 被引量:10
标识
DOI:10.1109/tits.2023.3285891
摘要

Understanding human drivers' intentions and predicting their future motions are significant to connected and autonomous vehicles and traffic safety and surveillance systems. Predicting multimodal vehicular trajectories at urban unsignalized intersections remains challenging due to dynamic traffic flow and uncertainty of human drivers' maneuvers. In this paper, we propose a comprehensive trajectory prediction framework that combines a multimodal trajectory generation network with inverse reinforcement learning (IRL) and risk aversion (RA) modules. Specifically, we first construct a multimodal spatial-temporal Transformer network (mmSTTN) to generate multiple trajectory candidates, using trajectory coordinates as inputs. Accounting for spatio-temporal features, we formulate the IRL reward function for evaluating all candidate trajectories. The optimal trajectory is then selected based on the computed rewards, a process that mimics human drivers' decision-making. We further develop the RA module based on the driving risk field for optimal risk-averse trajectory prediction. We conduct experiments and ablation studies using the inD dataset at an urban unsignalized intersection, demonstrating impressive human trajectory alignment, prediction accuracy, and the ability to generate risk-averse trajectories. Our proposed framework reduces prediction errors and driving risks by 25% and 30% compared to baseline methods. Results validate vehicles' human-like risk-averse diverging-and-concentrating behavior as they traverse the intersection. The proposed framework presents a novel approach for forecasting multimodal vehicular trajectories by imitating human drivers and incorporating physics-based risk information derived from the driving field. This research offers a promising direction for enhancing the safety and efficiency of connected and autonomous vehicles navigating urban environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuke关注了科研通微信公众号
1秒前
小闫同学完成签到 ,获得积分10
2秒前
论文顺利完成签到 ,获得积分20
2秒前
pearlwh1227完成签到,获得积分10
3秒前
yn发布了新的文献求助10
4秒前
5秒前
上官若男应助卡拉米采纳,获得10
6秒前
李健应助L~采纳,获得10
7秒前
打打应助zhuling采纳,获得10
7秒前
shiqi完成签到,获得积分10
8秒前
CipherSage应助俗人采纳,获得10
9秒前
9秒前
slycmd完成签到,获得积分10
9秒前
10秒前
Brightan完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
上官若男应助yn采纳,获得10
15秒前
忧郁早晨完成签到,获得积分10
15秒前
15秒前
16秒前
17秒前
DAYE发布了新的文献求助10
18秒前
19秒前
19秒前
快乐谷蓝完成签到,获得积分10
20秒前
波子汽水发布了新的文献求助10
20秒前
九月鹰飞完成签到,获得积分10
20秒前
畅哥发布了新的文献求助10
22秒前
wanglaaaa完成签到 ,获得积分10
23秒前
24秒前
俗人发布了新的文献求助10
24秒前
简单的可乐完成签到,获得积分10
27秒前
28秒前
波子汽水完成签到,获得积分10
29秒前
30秒前
shhoing应助niko采纳,获得10
31秒前
shhoing应助niko采纳,获得10
31秒前
shhoing应助niko采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535748
求助须知:如何正确求助?哪些是违规求助? 4623547
关于积分的说明 14587759
捐赠科研通 4564055
什么是DOI,文献DOI怎么找? 2501402
邀请新用户注册赠送积分活动 1480430
关于科研通互助平台的介绍 1451750