A First-Principles Explanation of the Luminescent Line Shape of SrLiAl3N4:Eu2+ Phosphor for Light-Emitting Diode Applications

荧光粉 发射光谱 声子 发光 发光二极管 物理 密度泛函理论 光电子学 材料科学 原子物理学 凝聚态物理 谱线 量子力学
作者
Julien Bouquiaux,Samuel Poncé,Yongchao Jia,Anna Miglio,Masayoshi Mikami,Xavier Gonze
出处
期刊:Chemistry of Materials [American Chemical Society]
标识
DOI:10.1021/acs.chemmater.3c00537
摘要

White light-emitting diodes are gaining popularity and are set to become the most common light source in the U.S. by 2025. However, their performance is still limited by the lack of an efficient red-emitting component with a narrow band emission. The red phosphor SrLiAl3N4:Eu2+ is among the first promising phosphors with a small bandwidth for next-generation lighting, but the microscopic origin of this narrow emission remains elusive. In the present work, density functional theory, the ΔSCF-constrained occupation method, and a generalized Huang–Rhys theory are used to provide an accurate description of the vibronic processes occurring at the two Sr2+ sites that the Eu2+ activator can occupy. The emission band shape of Eu(Sr1), with a zero-phonon line at 1.906 eV and a high luminescence intensity, is shown to be controlled by the coupling between the 5dz2–4f electronic transition and the low-frequency phonon modes associated with the Sr and Eu displacements along the Sr channel. The good agreement between our computations and experimental results allows us to provide a structural assignment of the observed total spectrum. By computing explicitly the effect of the thermal expansion on zero-phonon line energies, the agreement is extended to the temperature-dependent spectrum. These results provide insight into the electron–phonon coupling that accompanies the 5d–4f transition in similar UCr4C4-type phosphors. Furthermore, these resultshighlight the importance of the Sr channel in shaping the narrow emission of SrLiAl3N4:Eu2+, and they shed new light on the structure–property relations of such phosphors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调调单单完成签到,获得积分10
刚刚
青柠发布了新的文献求助20
1秒前
xiao完成签到,获得积分10
1秒前
1秒前
KOIKOI完成签到,获得积分10
1秒前
英俊的铭应助niccer采纳,获得10
2秒前
2秒前
2秒前
哈哈发布了新的文献求助10
3秒前
3秒前
3秒前
李lxq完成签到,获得积分10
3秒前
Sam十九发布了新的文献求助10
4秒前
豆果发布了新的文献求助10
4秒前
4秒前
4秒前
九月完成签到 ,获得积分20
5秒前
一道发布了新的文献求助10
5秒前
自然小鸭子完成签到,获得积分10
5秒前
LYDZ2完成签到,获得积分10
5秒前
犹豫的绝悟完成签到 ,获得积分10
5秒前
zzx完成签到,获得积分10
5秒前
Ashore发布了新的文献求助20
6秒前
6秒前
小二郎应助欣喜小懒虫采纳,获得10
6秒前
董博宇完成签到,获得积分10
6秒前
LXX不钻牛角尖完成签到,获得积分10
7秒前
尉迟希望应助行者无疆采纳,获得10
7秒前
稻草完成签到,获得积分10
7秒前
所所应助坚定的诗双采纳,获得10
7秒前
Nono完成签到,获得积分10
7秒前
Oreosofat完成签到,获得积分10
7秒前
科研通AI2S应助没羽箭采纳,获得10
8秒前
6666完成签到,获得积分20
8秒前
JFP发布了新的文献求助10
8秒前
哈哈完成签到,获得积分10
8秒前
2000pluv发布了新的文献求助10
9秒前
852应助呆熊采纳,获得10
9秒前
9秒前
niccer完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5189614
求助须知:如何正确求助?哪些是违规求助? 4373694
关于积分的说明 13617613
捐赠科研通 4227255
什么是DOI,文献DOI怎么找? 2318586
邀请新用户注册赠送积分活动 1317262
关于科研通互助平台的介绍 1267184