A deep CNN-based constitutive model for describing of statics characteristics of rock materials

覆盖层 本构方程 超参数 岩体分类 卷积神经网络 地质学 间断(语言学) 岩土工程 人工神经网络 算法 人工智能 变形(气象学) 静力学 计算机科学 数学 结构工程 工程类 有限元法 数学分析 海洋学 物理 经典力学
作者
Luyuan Wu,Dan Ma,Zifa Wang,Jianwei Zhang,Boyang Zhang,Jianhui Li,Jian Liao,Jingbo Tong
出处
期刊:Engineering Fracture Mechanics [Elsevier BV]
卷期号:279: 109054-109054 被引量:20
标识
DOI:10.1016/j.engfracmech.2023.109054
摘要

The inhomogeneity, discontinuity, and elastoplasticity of the rock mass affect the deformation and failure of rock, and it is difficult to describe the stress–strain relationship of the rock mass by traditional constitutive models with a certain mathematical models. In order to address the complex problems caused by multiple variables, firstly, 77 rock specimens were collected from overburden of the working face 1012001 in Yuanzigou coal mine, China. Triaxial compression tests were carried out on these samples, and 673,632 data samples were output. Secondly, based on deep convolutional neural networks (CNN), a CNN-based rock constitutive model (CNNCM) was proposed. The structure and hyperparameters of deep CNN include M, ρ, Ed, υd, σz, and σy, as the input features, ɛz as the output features;Conv2D layers ×4; Max pooling2D layers×4; Dense layers ×4; learning rate_0.001; Epoch_ 200; Batch size_1024; Total params: 160801. Comparing the test results of eleven rock samples with the predicted results of CNNCM, the scope of MAPE and R2 from 0.52–1.94% and 0.999870–0.999988, which indicates the proposed CNNCM has good performance. The sensibility and correlation of physical parameters were analyzed, and the results show that the correlation of stress, Ed, υd, and ɛz is strong. Finally, considering the availability and simplicity of CNNCM, a new CNNCM is proposed though replacing the Ed and υd with E and υ, and different input features. The predictive performance of the trained CNNCMs(#6 and #2) is also performs well although the predicted results are worse than CNNCM #0. The different CNNCMs show that E has a great influence on the results and the rank of importance of other five features is E >σy >υ >M >ρ. This study proposes a machine learning method to describe the stress–strain relationship in the process of the rock failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
踏实无敌应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
3秒前
Lin应助科研通管家采纳,获得20
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
开朗的映菱完成签到,获得积分10
3秒前
rosalieshi应助科研通管家采纳,获得30
3秒前
123123发布了新的文献求助10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
altango发布了新的文献求助10
3秒前
haohao342完成签到,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
田様应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
Lucas应助yuyuyu采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
非而者厚应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
清秀千兰发布了新的文献求助10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816654
求助须知:如何正确求助?哪些是违规求助? 3360106
关于积分的说明 10406570
捐赠科研通 3078132
什么是DOI,文献DOI怎么找? 1690563
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767883