亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of five-year survival among esophageal cancer patients using machine learning

随机森林 医学 决策树 梯度升压 逻辑回归 接收机工作特性 机器学习 人工智能 吞咽困难 食管静脉曲张 生存分析 内科学 支持向量机 肿瘤科 外科 计算机科学 肝硬化 门脉高压
作者
Raoof Nopour
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (12): e22654-e22654 被引量:1
标识
DOI:10.1016/j.heliyon.2023.e22654
摘要

Considering the silent progression of esophageal cancer, the survival prediction of this disease is crucial in enhancing the quality of life of these patients globally. So far, no prediction solution has been introduced for the survival of EC in Iran based on the machine learning approach. So, this study aims to develop a prediction model for the five-year survival of EC based on the ML approach to promote clinical outcomes and various treatment and preventive plans.In this retrospective study, we investigated the 1656 cases of survived and non-survived EC patients belonging to Imam Khomeini Hospital in Sari City from 2013 to 2020. The multivariable regression analysis was used to select the best predictors of five-year survival. We leveraged random forest, eXtreme Gradient Boosting, support vector machine, artificial neural networks, Bayesian networks, J-48 decision tree, and K-nearest neighborhood to develop the prediction models. To get the best model for predicting the five-year survival of EC, we compared them using the area under the receiver operator characteristics.The age at diagnosis, body mass index, smoking, obstruction, dysphagia, weight loss, lymphadenopathy, chemotherapy, radiotherapy, family history of EC, tumor stage, type of appearance, histological type, grade of differentiation, tumor location, tumor size, lymphatic invasion, vascular invasion, and platelet albumin ratio were considered as the best predictors associated with the five-year survival of EC based on the regression analysis. In this respect, the random forest with the area under the receiver operator characteristics of 0.95 was identified as a superior model.The experimental results of the current study showed that the random forest could have a significant role in enhancing the quality of care in EC patients by increasing the effectiveness of follow-up and treatment measures introduced by care providers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
昌莆完成签到 ,获得积分10
14秒前
沐雨微寒完成签到,获得积分10
15秒前
简单发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
34秒前
49秒前
淼淼之锋完成签到,获得积分10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
Jasper应助简单采纳,获得10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
科目三应助徐志豪采纳,获得10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
斯文败类应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
糖果苏扬完成签到 ,获得积分10
4分钟前
4分钟前
李健的小迷弟应助xiaoguo采纳,获得10
4分钟前
4分钟前
JamesPei应助blackzabbath采纳,获得10
4分钟前
Cm发布了新的文献求助10
4分钟前
4分钟前
CUN完成签到,获得积分10
4分钟前
blackzabbath完成签到,获得积分10
4分钟前
blackzabbath发布了新的文献求助10
4分钟前
梦_筱彩完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
poki完成签到 ,获得积分10
5分钟前
5分钟前
juan完成签到 ,获得积分10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4037638
求助须知:如何正确求助?哪些是违规求助? 3575468
关于积分的说明 11373644
捐赠科研通 3305393
什么是DOI,文献DOI怎么找? 1819185
邀请新用户注册赠送积分活动 892620
科研通“疑难数据库(出版商)”最低求助积分说明 815022