Development and validation of a multimodal model in predicting severe acute pancreatitis based on radiomics and deep learning

医学 急性胰腺炎 人工智能 试验装置 无线电技术 机器学习 主成分分析 降维 放射科 内科学 计算机科学
作者
Minyue Yin,Jiaxi Lin,Yu Wang,Yuanjun Liu,Rufa Zhang,Wenbin Duan,Zhirun Zhou,Shiqi Zhu,Jingwen Gao,Lu Liu,Xiaolin Liu,Chenqi Gu,Zhou Huang,Xiaodan Xu,Chunfang Xu,Jinzhou Zhu
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:184: 105341-105341 被引量:3
标识
DOI:10.1016/j.ijmedinf.2024.105341
摘要

Aim to establish a multimodal model for predicting severe acute pancreatitis (SAP) using machine learning (ML) and deep learning (DL). In this multicentre retrospective study, patients diagnosed with acute pancreatitis at admission were enrolled from January 2017 to December 2021. Clinical information within 24 h and CT scans within 72 h of admission were collected. First, we trained Model α based on clinical features selected by least absolute shrinkage and selection operator analysis. Second, radiomics features were extracted from 3D-CT scans and Model β was developed on the features after dimensionality reduction using principal component analysis. Third, Model γ was trained on 2D-CT images. Lastly, a multimodal model, namely PrismSAP, was constructed based on aforementioned features in the training set. The predictive accuracy of PrismSAP was verified in the validation and internal test sets and further validated in the external test set. Model performance was evaluated using area under the curve (AUC), accuracy, sensitivity, specificity, recall, precision and F1-score. A total of 1,221 eligible patients were randomly split into a training set (n = 864), a validation set (n = 209) and an internal test set (n = 148). Data of 266 patients were for external testing. In the external test set, PrismSAP performed best with the highest AUC of 0.916 (0.873–0.960) among all models [Model α: 0.709 (0.618–0.800); Model β: 0.749 (0.675–0.824); Model γ: 0.687 (0.592–0.782); MCTSI: 0.778 (0.698–0.857); RANSON: 0.642 (0.559–0.725); BISAP: 0.751 (0.668–0.833); SABP: 0.710 (0.621–0.798)]. The proposed multimodal model outperformed any single-modality models and traditional scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毅青6796完成签到,获得积分10
刚刚
Fqdgest完成签到,获得积分10
刚刚
qiao应助lizhiqian2024采纳,获得10
刚刚
情怀应助lizhiqian2024采纳,获得10
刚刚
小丫头发布了新的文献求助10
1秒前
lz完成签到,获得积分10
1秒前
隐形曼青应助柚哦采纳,获得10
2秒前
默默惋清完成签到,获得积分10
2秒前
HEIHEI完成签到,获得积分20
2秒前
2秒前
3秒前
3秒前
athruncx发布了新的文献求助10
3秒前
pcr发布了新的文献求助50
4秒前
Sulin完成签到,获得积分10
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
MM11111应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
orixero应助科研通管家采纳,获得10
6秒前
分子筛发布了新的文献求助10
6秒前
8秒前
9秒前
luogan发布了新的文献求助10
9秒前
www发布了新的文献求助10
13秒前
占孤风发布了新的文献求助30
14秒前
丘比特应助暴躁的马里奥采纳,获得30
15秒前
16秒前
18秒前
姚美阁发布了新的文献求助30
20秒前
yys完成签到,获得积分20
20秒前
Khalil给Khalil的求助进行了留言
21秒前
核桃酥完成签到,获得积分10
22秒前
封尘逸动完成签到,获得积分10
23秒前
齐齐发布了新的文献求助10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781731
求助须知:如何正确求助?哪些是违规求助? 3327303
关于积分的说明 10230369
捐赠科研通 3042188
什么是DOI,文献DOI怎么找? 1669800
邀请新用户注册赠送积分活动 799374
科研通“疑难数据库(出版商)”最低求助积分说明 758792