A Temporal Filter to Extract Doped Conducting Polymer Information Features from an Electronic Nose

电子鼻 计算机科学 分类器(UML) 人工智能 模式识别(心理学) 特征提取 机器学习 过滤器组 滤波器(信号处理) 计算机视觉
作者
Wiem Haj Ammar,Aicha Boujnah,Antoine Baron,Aïmen Boubaker,Adel Kalboussi,K. Lmimouni,Sébastien Pecqueur
出处
期刊:Electronics [MDPI AG]
卷期号:13 (3): 497-497 被引量:6
标识
DOI:10.3390/electronics13030497
摘要

Identifying relevant machine learning features for multi-sensing platforms is both an applicative limitation to recognize environments and a necessity to interpret the physical relevance of transducers’ complementarity in their information processing. Particularly for long acquisitions, feature extraction must be fully automatized without human intervention and resilient to perturbations without significantly increasing the computational cost of a classifier. In this study, we investigate the relative resistance and current modulation of a 24-dimensional conductimetric electronic nose, which uses the exponential moving average as a floating reference in a low-cost information descriptor for environment recognition. In particular, we identified that depending on the structure of a linear classifier, the ‘modema’ descriptor is optimized for different material sensing elements’ contributions to classify information patterns. The low-pass filtering optimization leads to opposite behaviors between unsupervised and supervised learning: the latter favors longer integration of the reference, allowing the recognition of five different classes over 90%, while the first one prefers using the latest events as its reference to cluster patterns by environment nature. Its electronic implementation shall greatly diminish the computational requirements of conductimetric electronic noses for on-board environment recognition without human supervision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
箫笛发布了新的文献求助10
1秒前
田园镇完成签到 ,获得积分10
2秒前
mystic完成签到,获得积分20
2秒前
沧海静音发布了新的文献求助10
3秒前
4秒前
七七完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
香蕉飞瑶完成签到 ,获得积分10
7秒前
Chaimengdi完成签到,获得积分10
7秒前
研友_VZG7GZ应助DarrenWu采纳,获得20
9秒前
孙洪琼发布了新的文献求助10
9秒前
9秒前
11秒前
箫笛完成签到,获得积分10
12秒前
一一完成签到 ,获得积分10
13秒前
14秒前
14秒前
16秒前
Roy完成签到,获得积分10
17秒前
19秒前
19秒前
张欣发布了新的文献求助10
19秒前
19秒前
苯环羟基完成签到,获得积分20
19秒前
芮凌峰发布了新的文献求助10
19秒前
21秒前
xxxx完成签到,获得积分10
21秒前
欣欣发布了新的文献求助10
22秒前
柯南完成签到,获得积分10
22秒前
李健的小迷弟应助velsaber采纳,获得10
22秒前
23秒前
23秒前
23秒前
叔铭发布了新的文献求助10
24秒前
Joshua完成签到,获得积分10
24秒前
myS完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551072
求助须知:如何正确求助?哪些是违规求助? 4635942
关于积分的说明 14642754
捐赠科研通 4577897
什么是DOI,文献DOI怎么找? 2510435
邀请新用户注册赠送积分活动 1485987
关于科研通互助平台的介绍 1457305