清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Urban Traffic Accident Features Investigation to Improve Urban Transportation Infrastructure Sustainability by Integrating GIS and Data Mining Techniques

持续性 运输工程 星团(航天器) 交通事故 地理信息系统 关联规则学习 计算机科学 事故(哲学) 地理 数据挖掘 工程类 地图学 生态学 哲学 认识论 生物 程序设计语言
作者
Khanh Giang Le,Quang Hoc Tran,Van Manh
出处
期刊:Sustainability [Multidisciplinary Digital Publishing Institute]
卷期号:16 (1): 107-107 被引量:4
标识
DOI:10.3390/su16010107
摘要

Urban traffic accidents pose significant challenges to the sustainability of transportation infrastructure not only in Vietnam but also all over the world. To decrease the frequency of accidents, it is crucial to analyze accident data to determine the relationship between accidents and causes, especially for serious accidents. This study suggests an integrated approach using Geographic Information System (GIS) and Data Mining methods to investigate the features of urban traffic accidents in Hanoi, Vietnam aiming to solve these challenges and enhance the safety and efficiency of urban transportation. Firstly, the dataset was segmented into homogenous clusters using the two-step cluster method. Secondly, the correlation between causes and traffic accidents was examined on the overall dataset as well as on each cluster using the association rule mining (ARM) technique. Finally, the location of accident groups and high-frequency sites of accidents (hotspots) were determined by using GIS techniques. As a result, a five-cluster model was created, which corresponded to five common accident groupings in Hanoi. Moreover, the results of the study also identified the types of accidents, the main causes, the time, and the surrounding areas corresponding to each accident group. In detail, cluster 5 depicted accidents on streets, provincial, and national roads caused by motorbikes making up the highest percentage within the groups, accounting for 29.2%. Speeding and driving in the wrong lane in the afternoon and at night were the main causes in this cluster (Cf ≥ 0.9 and Lt ≥ 1.22). Next, cluster 2 had the second-highest proportion. Cluster 2 presented accidents between a truck/car and a motorbike on national and provincial roads, accounting for 27.8%. Cluster 1 presented accidents between a truck/car and a motorbike on local streets, accounting for 22%. Cluster 3 illustrated accidents between two motorbikes on the country lanes, accounting for 12.3%. Finally, cluster 4 depicted single-vehicle motorbike crashes, with the lowest rate of 8.8%. More importantly, this study also recommended using repeatability criteria for the same type of accidents or causes to determine the location of hotspots. Also, suggestions for improving traffic infrastructure sustainability were proposed. To our knowledge, this is the first time in which these three methods are applied simultaneously for analyzing traffic accidents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
allrubbish完成签到,获得积分10
2秒前
25秒前
wanci应助科研通管家采纳,获得10
33秒前
杪夏二八完成签到 ,获得积分10
36秒前
蚂蚁踢大象完成签到 ,获得积分10
59秒前
KINGAZX完成签到 ,获得积分10
1分钟前
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
轻松小张完成签到,获得积分10
2分钟前
Ms_Galaxea完成签到,获得积分10
2分钟前
科研小白完成签到 ,获得积分10
2分钟前
2分钟前
LonelyCMA完成签到 ,获得积分0
3分钟前
荀煜祺完成签到,获得积分10
3分钟前
习月阳完成签到,获得积分10
3分钟前
3分钟前
优雅山柏发布了新的文献求助10
4分钟前
5分钟前
5分钟前
萝卜猪完成签到,获得积分10
5分钟前
优雅山柏发布了新的文献求助10
5分钟前
科研通AI5应助liam采纳,获得10
6分钟前
6分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
松松完成签到 ,获得积分10
7分钟前
宇文非笑完成签到 ,获得积分0
7分钟前
8分钟前
优雅山柏发布了新的文献求助10
8分钟前
8分钟前
zhangsan完成签到,获得积分10
8分钟前
liam发布了新的文献求助10
8分钟前
8分钟前
乐观之瑶完成签到,获得积分10
8分钟前
索谓完成签到 ,获得积分10
8分钟前
实力不允许完成签到 ,获得积分10
8分钟前
科研通AI5应助liam采纳,获得10
9分钟前
P_Chem发布了新的文献求助200
9分钟前
9分钟前
10分钟前
liam发布了新的文献求助10
10分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Multiresponsive Ionic Conductive Alginate/Gelatin Organohydrogels with Tunable Functions 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837511
求助须知:如何正确求助?哪些是违规求助? 3379609
关于积分的说明 10509963
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772597