The statistical emulators of GGCMI phase 2: responses of year-to-year variation of crop yield to CO2, temperature, water, and nitrogen perturbations

环境科学 缩小尺度 产量(工程) 耦合模型比对项目 作物产量 作物模拟模型 大气科学 气候变化 作物 平均辐射温度 数据同化 气候学 气候模式 气象学 降水 农学 生态学 地理 地质学 材料科学 冶金 生物
作者
Weihang Liu,Tao Ye,Christoph Müller,Jonas Jägermeyr,James Franke,Haynes Stephens,Shuo Chen
出处
期刊:Geoscientific Model Development [Copernicus Publications]
卷期号:16 (23): 7203-7221 被引量:1
标识
DOI:10.5194/gmd-16-7203-2023
摘要

Abstract. Understanding the impact of climate change on year-to-year variation of crop yield is critical to global food stability and security. While crop model emulators are believed to be lightweight tools to replace the models, few emulators have been developed to capture such interannual variation of crop yield in response to climate variability. In this study, we developed a statistical emulator with a machine learning algorithm to reproduce the response of year-to-year variation of four crop yields to CO2 (C), temperature (T), water (W), and nitrogen (N) perturbations defined in the Global Gridded Crop Model Intercomparison Project (GGCMI) phase 2. The emulators were able to explain more than 52 % of the variance of simulated yield and performed well in capturing the year-to-year variation of global average and gridded crop yield over current croplands in the baseline. With the changes in CO2–temperature–water–nitrogen (CTWN) perturbations, the emulators could reproduce the year-to-year variation of crop yield well over most current cropland. The variation of R and the mean absolute error was small under the single CTWN perturbations and dual-factor perturbations. These emulators thus provide statistical response surfaces of yield, including both its mean and interannual variability, to climate factors. They could facilitate spatiotemporal downscaling of crop model simulation, projecting the changes in crop yield variability in the future and serving as a lightweight tool for multi-model ensemble simulation. The emulators enhanced the flexibility of crop yield estimates and expanded the application of large-ensemble simulations of crop yield under climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑化小狗完成签到 ,获得积分10
刚刚
1秒前
哈哈完成签到,获得积分10
1秒前
天天快乐应助啦啦啦采纳,获得10
1秒前
kiki完成签到 ,获得积分10
3秒前
黄远鹏完成签到 ,获得积分10
5秒前
看书完成签到,获得积分10
7秒前
一二完成签到 ,获得积分10
8秒前
Orange应助ddd采纳,获得10
9秒前
萱棚发布了新的文献求助10
13秒前
16秒前
撒撒188完成签到,获得积分20
17秒前
KY完成签到,获得积分10
19秒前
撒撒188发布了新的文献求助10
21秒前
南边的海发布了新的文献求助10
22秒前
22秒前
23秒前
早睡早起完成签到,获得积分10
23秒前
梁巧惠发布了新的文献求助10
24秒前
ddd发布了新的文献求助10
27秒前
888完成签到 ,获得积分10
30秒前
梁巧惠完成签到,获得积分20
36秒前
852应助森诺采纳,获得10
36秒前
洗月完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
41秒前
45秒前
丘丘完成签到 ,获得积分20
48秒前
机智咖啡豆完成签到 ,获得积分10
48秒前
细小关注了科研通微信公众号
49秒前
白白完成签到,获得积分10
50秒前
51秒前
yummm完成签到 ,获得积分10
51秒前
萱棚发布了新的文献求助30
52秒前
54秒前
浮游应助冷静青文采纳,获得10
54秒前
55秒前
55秒前
57秒前
captainHc完成签到,获得积分10
58秒前
范棒棒发布了新的文献求助10
59秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457595
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292551
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458671
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343