中央歧管
霍普夫分叉
非线性系统
流行病模型
数学
分叉
人口
应用数学
理论(学习稳定性)
拉普拉斯矩阵
图形
拉普拉斯算子
统计物理学
数学分析
计算机科学
物理
离散数学
机器学习
社会学
人口学
量子力学
作者
Madhab Barman,Nachiketa Mishra
标识
DOI:10.1016/j.chaos.2023.114351
摘要
Using graph Laplacian diffusion, a delayed Susceptible–Exposed–Infected–Removed (SEIR) epidemic model with a non-linear incidence rate has been considered. This model incorporates a diffusion term that captures population mobility through a network. The local stability analysis for each steady state is demonstrated. Furthermore, we have explored the existence of Hopf bifurcation at the endemic equilibrium and addressed its direction using the Normal Form Theory and Center of Manifold Theorem. To visually illustrate our theoretical findings, we have performed computational experiments on a small-world Watts–Strogatz graph.
科研通智能强力驱动
Strongly Powered by AbleSci AI