The application of artificial intelligence for Rapid On-Site Evaluation during flexible bronchoscopy

医学 肺癌 活检 卷积神经网络 支气管镜检查 腺癌 罗斯(数学) 癌症 放射科 人工智能 病理 计算机科学 内科学 几何学 数学
作者
Shuang Yan,Yongfei Li,Lei Pan,Hua Jiang,Li Gong,Faguang Jin
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14 被引量:1
标识
DOI:10.3389/fonc.2024.1360831
摘要

Background Rapid On-Site Evaluation (ROSE) during flexible bronchoscopy (FB) can improve the adequacy of biopsy specimens and diagnostic yield of lung cancer. However, the lack of cytopathologists has restricted the wide use of ROSE. Objective To develop a ROSE artificial intelligence (AI) system using deep learning techniques to differentiate malignant from benign lesions based on ROSE cytological images, and evaluate the clinical performance of the ROSE AI system. Method 6357 ROSE cytological images from 721 patients who underwent transbronchial biopsy were collected from January to July 2023 at the Tangdu Hospital, Air Force Medical University. A ROSE AI system, composed of a deep convolutional neural network (DCNN), was developed to identify whether there were malignant cells in the ROSE cytological images. Internal testing, external testing, and human-machine competition were used to evaluate the performance of the system. Results The ROSE AI system identified images containing lung malignant cells with the accuracy of 92.97% and 90.26% on the internal testing dataset and external testing dataset respectively, and its performance was comparable to that of the experienced cytopathologist. The ROSE AI system also showed promising performance in diagnosing lung cancer based on ROSE cytological images, with accuracy of 89.61% and 87.59%, and sensitivity of 90.57% and 94.90% on the internal testing dataset and external testing dataset respectively. More specifically, the agreement between the ROSE AI system and the experienced cytopathologist in diagnosing common types of lung cancer, including squamous cell carcinoma, adenocarcinoma, and small cell lung cancer, demonstrated almost perfect consistency in both the internal testing dataset (κ = 0.930 ) and the external testing dataset (κ = 0.932 ). Conclusions The ROSE AI system demonstrated feasibility and robustness in identifying specimen adequacy, showing potential enhancement in the diagnostic yield of FB. Nevertheless, additional enhancements, incorporating a more diverse range of training data and leveraging advanced AI models with increased capabilities, along with rigorous validation through extensive multi-center randomized control assays, are crucial to guarantee the seamless and effective integration of this technology into clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yi完成签到,获得积分10
1秒前
科研通AI6应助kkk采纳,获得10
2秒前
2秒前
科研通AI2S应助ji采纳,获得10
2秒前
搞怪的镜子完成签到,获得积分20
2秒前
充电宝应助激昂的柚子采纳,获得10
3秒前
HJQ完成签到,获得积分10
3秒前
4秒前
陈奕迅的小老婆完成签到 ,获得积分10
4秒前
5秒前
高金龙发布了新的文献求助10
5秒前
5秒前
5秒前
虚心焦发布了新的文献求助10
6秒前
妮妮发布了新的文献求助10
7秒前
汉堡包应助研友_Z6k5Q8采纳,获得10
7秒前
saussh完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助20
7秒前
无花果应助廾匸采纳,获得10
8秒前
8秒前
慕青应助zybbb采纳,获得10
9秒前
重要的夜玉完成签到 ,获得积分10
9秒前
10秒前
10秒前
znt关注了科研通微信公众号
10秒前
11秒前
共享精神应助科研助理采纳,获得10
11秒前
天天快乐应助平常的迎夏采纳,获得10
11秒前
小蒋完成签到,获得积分10
11秒前
Lucifer发布了新的文献求助10
12秒前
12秒前
12秒前
王王赵发布了新的文献求助30
12秒前
酷酷的贝总完成签到,获得积分10
12秒前
13秒前
wanci应助明理的芹菜采纳,获得10
13秒前
翁雁丝发布了新的文献求助10
14秒前
14秒前
朴实灵竹完成签到,获得积分10
14秒前
ARU发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769