Mesocrystallinely stabilized lithium storage in high-entropy oxides

材料科学 阳极 锂(药物) 电化学 导电体 储能 电极 氧化还原 化学工程 纳米技术 无机化学 冶金 复合材料 热力学 物理化学 医学 化学 工程类 内分泌学 功率(物理) 物理
作者
Wei Wang,Wenjun Song,Yanshuai Li,Yaqing Guo,Keqin Yang,Lianghao Yu,Furong Xie,Qingqing Ren,Kun He,Shun Wang,Yifei Yuan
出处
期刊:Nano Energy [Elsevier BV]
卷期号:124: 109482-109482 被引量:16
标识
DOI:10.1016/j.nanoen.2024.109482
摘要

High-entropy oxides (HEOs) have received growing recognition as an anode candidate for lithium-ion batteries, primarily attributed to their decent lithium storage capabilities and high cycling durability. However, the underlying lithium storage mechanism of HEOs remains ambiguous, particularly the origins for their high structural stability, necessitating more comprehensive investigations. In this research, the working mechanisms of one representative HEO anode, the rock salt-structured Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O, are explored via state-of-the-art in-situ characterizations. Findings point to an interesting mesocrystal-stabilized lithium-ion storage mechanism responsible for maintaining the structural stability of HEOs during cycling, where, upon lithiation, Mg2+ remains electrochemically inactive within the oxygen lattice to stabilize the overall oxide framework. Co and Zn can be reversibly reduced/oxidized upon (de)lithiation, contributing to the electrochemical capacity; while for Cu and Ni, once reduced to metallic state under a relatively high current density, could not be re-oxidized but interconnect to form an electron-conductive network through the HEO body, contributing for the decent lithium-storage performance. Such feature depends on the applied current density, i.e. when decreasing the current, Ni regains its redox capability upon cycling with only Cu0 sustaining the conductive metallic network. This work is expected to serve as a benchmark for structurally and compositionally designing the next-generation high-entropy electrode materials for lithium storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
bxl完成签到,获得积分10
1秒前
2秒前
DuanYuanni完成签到,获得积分10
2秒前
英俊的铭应助香蕉子骞采纳,获得10
4秒前
老北京完成签到,获得积分10
4秒前
mk发布了新的文献求助10
6秒前
夢loey发布了新的文献求助10
6秒前
独特觅儿完成签到,获得积分10
8秒前
perovskite完成签到,获得积分10
8秒前
认真的adai发布了新的文献求助30
8秒前
Gauss完成签到,获得积分0
10秒前
qqqq发布了新的文献求助10
11秒前
mk完成签到,获得积分10
11秒前
聪慧的松鼠完成签到,获得积分10
12秒前
12秒前
Auston_zhong应助TaoJ采纳,获得10
16秒前
HEIKU应助白猹采纳,获得10
16秒前
戴_1233发布了新的文献求助10
17秒前
香蕉子骞发布了新的文献求助10
17秒前
隐形的傲易完成签到 ,获得积分10
18秒前
Akim应助TORCH采纳,获得30
19秒前
通通通发布了新的文献求助10
19秒前
Sky完成签到,获得积分10
19秒前
Zoe完成签到,获得积分10
21秒前
小透明发布了新的文献求助30
22秒前
qqqq完成签到,获得积分10
23秒前
阳佟半仙完成签到,获得积分10
25秒前
冰魂应助通通通采纳,获得10
27秒前
Alex发布了新的文献求助10
27秒前
28秒前
29秒前
甜美三娘完成签到,获得积分10
29秒前
wander完成签到 ,获得积分10
31秒前
31秒前
正直夜梅完成签到 ,获得积分10
36秒前
38秒前
奥特曼发布了新的文献求助40
39秒前
冰魂应助安澜采纳,获得20
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10214106
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290