Mesocrystallinely stabilized lithium storage in high-entropy oxides

材料科学 阳极 锂(药物) 电化学 导电体 储能 电极 氧化还原 化学工程 纳米技术 无机化学 冶金 复合材料 热力学 物理化学 工程类 内分泌学 功率(物理) 化学 物理 医学
作者
Wei Wang,Wenjun Song,Yanshuai Li,Yaqing Guo,Keqin Yang,Lianghao Yu,Furong Xie,Qingqing Ren,Kun He,Shun Wang,Yifei Yuan
出处
期刊:Nano Energy [Elsevier BV]
卷期号:124: 109482-109482 被引量:24
标识
DOI:10.1016/j.nanoen.2024.109482
摘要

High-entropy oxides (HEOs) have received growing recognition as an anode candidate for lithium-ion batteries, primarily attributed to their decent lithium storage capabilities and high cycling durability. However, the underlying lithium storage mechanism of HEOs remains ambiguous, particularly the origins for their high structural stability, necessitating more comprehensive investigations. In this research, the working mechanisms of one representative HEO anode, the rock salt-structured Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O, are explored via state-of-the-art in-situ characterizations. Findings point to an interesting mesocrystal-stabilized lithium-ion storage mechanism responsible for maintaining the structural stability of HEOs during cycling, where, upon lithiation, Mg2+ remains electrochemically inactive within the oxygen lattice to stabilize the overall oxide framework. Co and Zn can be reversibly reduced/oxidized upon (de)lithiation, contributing to the electrochemical capacity; while for Cu and Ni, once reduced to metallic state under a relatively high current density, could not be re-oxidized but interconnect to form an electron-conductive network through the HEO body, contributing for the decent lithium-storage performance. Such feature depends on the applied current density, i.e. when decreasing the current, Ni regains its redox capability upon cycling with only Cu0 sustaining the conductive metallic network. This work is expected to serve as a benchmark for structurally and compositionally designing the next-generation high-entropy electrode materials for lithium storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星河栖舟完成签到,获得积分10
1秒前
xyz完成签到,获得积分10
1秒前
小阳完成签到,获得积分20
2秒前
情怀应助糯米采纳,获得10
2秒前
2秒前
酷波er应助小汁儿采纳,获得10
2秒前
ZeKaWa应助夹谷蕈采纳,获得10
3秒前
4秒前
yudandan@CJLU完成签到,获得积分10
5秒前
258369发布了新的文献求助10
6秒前
英姑应助lwwwl采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
曜文芽芽发布了新的文献求助10
8秒前
在水一方应助小阳采纳,获得10
8秒前
科研顺利666完成签到 ,获得积分10
8秒前
太阳雨发布了新的文献求助10
9秒前
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
bobo完成签到 ,获得积分10
11秒前
晴天发布了新的文献求助10
11秒前
星辰大海应助guozizi采纳,获得10
11秒前
11秒前
MP423发布了新的文献求助10
11秒前
12秒前
彩色代柔发布了新的文献求助10
12秒前
张张发布了新的文献求助10
12秒前
接受所有小饼干关注了科研通微信公众号
13秒前
丘比特应助258369采纳,获得10
13秒前
秦源发布了新的文献求助10
14秒前
14秒前
深情惜梦发布了新的文献求助10
15秒前
zxd发布了新的文献求助10
15秒前
wangyup发布了新的文献求助10
17秒前
18秒前
zhuzhu完成签到,获得积分10
18秒前
磁珠法提取原理步骤完成签到,获得积分20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5083697
求助须知:如何正确求助?哪些是违规求助? 4300704
关于积分的说明 13400248
捐赠科研通 4124826
什么是DOI,文献DOI怎么找? 2259172
邀请新用户注册赠送积分活动 1263329
关于科研通互助平台的介绍 1197395