亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Supervised contrastive learning enhances MHC-II peptide binding affinity prediction

计算生物学 人工智能 计算机科学 化学 机器学习 生物 生物化学
作者
Long-Chen Shen,Yan Liu,Zi Liu,Yumeng Zhang,Zhikang Wang,Yuming Guo,Jamie Rossjohn,Jiangning Song,Dong‐Jun Yu
标识
DOI:10.1101/2023.12.21.572942
摘要

Abstract Accurate prediction of major histocompatibility complex (MHC)-peptide binding affinity can improve our understanding of cellular immune responses and guide personalized immunotherapies. Nevertheless, the existing deep learning-based approaches for predicting MHC-II peptide interactions fall short of satisfactory performance and offer restricted model interpretability. In this study, we propose a novel deep neural network, termed ConBoTNet, to address the above issues by introducing the designed supervised contrastive learning and bottleneck transformer extractors. Specifically, the supervised contrastive learning pre-training enhances the model’s representative and generalizable capabilities on MHC-II peptides by pulling positive pairs closer and pushing negative pairs further in the feature space, while the bottleneck transformer module focuses on MHC-II peptide interactions to precisely identify binding cores and anchor positions in an unsupervised manner. Extensive experiments on benchmark datasets under 5-fold cross-validation, leave-one-molecule-out validation, independent testing, and binding core prediction settings highlighted the superiority of our proposed ConBoTNet over current state-of-the-art methods. Data distribution analysis in the latent feature space demonstrated that supervised contrastive learning can aggregate MHC-II-peptide samples with similar affinity labels and learn common features of similar affinity. Additionally, we interpreted the trained neural network by associating the attention weights with peptides and innovatively find both well-established and potential peptide motifs. This work not only introduces an innovative tool for accurately predicting MHC-II peptide affinity, but also provides new insights into a new paradigm for modeling essential biological interactions, advancing data-driven discovery in biomedicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
8秒前
胡胡胡发布了新的文献求助10
10秒前
zmd完成签到 ,获得积分10
12秒前
研友_Zzrx6Z发布了新的文献求助20
24秒前
小小鱼发布了新的文献求助10
30秒前
王二完成签到,获得积分10
32秒前
小小鱼完成签到,获得积分10
37秒前
皮老师发布了新的文献求助20
41秒前
46秒前
丸橙完成签到,获得积分10
48秒前
库里强发布了新的文献求助10
49秒前
丸橙发布了新的文献求助10
51秒前
52秒前
FashionBoy应助朴素的曼易采纳,获得10
55秒前
rerorero18完成签到,获得积分10
57秒前
57秒前
在水一方应助rerorero18采纳,获得10
59秒前
1分钟前
1分钟前
坦率邪欢发布了新的文献求助10
1分钟前
叽里呱啦完成签到 ,获得积分10
1分钟前
SciGPT应助003采纳,获得20
1分钟前
李某完成签到 ,获得积分10
1分钟前
SYLH应助ZhangYuan采纳,获得10
1分钟前
深情安青应助ZhangYuan采纳,获得10
1分钟前
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
科目三应助坦率邪欢采纳,获得10
1分钟前
思源应助俭朴的滑板采纳,获得10
1分钟前
小二郎应助啦啦啦采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
1分钟前
俭朴的滑板完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wang5945完成签到 ,获得积分10
1分钟前
丘比特应助丸橙采纳,获得10
1分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830364
求助须知:如何正确求助?哪些是违规求助? 3372779
关于积分的说明 10475199
捐赠科研通 3092539
什么是DOI,文献DOI怎么找? 1702118
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087