Iterative Residual Optimization Network for Limited-Angle Tomographic Reconstruction

残余物 迭代重建 计算机科学 人工智能 断层重建 迭代法 算法 计算机视觉
作者
Jiayi Pan,Hengyong Yu,Zhifan Gao,Shaoyu Wang,Heye Zhang,Weiwen Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 910-925 被引量:26
标识
DOI:10.1109/tip.2024.3351382
摘要

Limited-angle tomographic reconstruction is one of the typical ill-posed inverse problems, leading to edge divergence with degraded image quality. Recently, deep learning has been introduced into image reconstruction and achieved great results. However, existing deep reconstruction methods have not fully explored data consistency, resulting in poor performance. In addition, deep reconstruction is still mathematically inexplicable and unstable. In this work, we propose an iterative residual optimization network (IRON) for limited-angle tomographic reconstruction. First, a new optimization objective function is established to overcome false negative and positive artifacts induced by limited-angle measurements. We integrate neural network priors as a regularizer to explore deep features within residual data. Furthermore, the block-coordinate descent is employed to achieve a novel iterative framework. Second, a convolution assisted transformer is carefully elaborated to capture both local and long-range pixel interactions simultaneously. Regarding the visual transformer, the multi-head attention is further redesigned to reduce computational costs and protect reconstructed image features. Third, based on the relative error convergence property of the convolution assisted transformer, a mathematical convergence analysis is also provided for our IRON. Both numerically simulated and clinically collected real cardiac datasets are employed to validate the effectiveness and advantages of the proposed IRON. The results show that IRON outperforms other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涵泽发布了新的文献求助10
1秒前
2秒前
zhuzhu007完成签到,获得积分10
2秒前
大力洋葱完成签到,获得积分10
4秒前
5秒前
小白兔完成签到 ,获得积分10
5秒前
积极以云发布了新的文献求助10
7秒前
梦巷完成签到 ,获得积分10
8秒前
刻苦问凝完成签到,获得积分10
8秒前
顺心的定帮完成签到 ,获得积分10
10秒前
项之桃完成签到,获得积分10
10秒前
大熊完成签到 ,获得积分10
10秒前
小鱼鱼Fish完成签到,获得积分10
11秒前
11秒前
呜呼完成签到,获得积分10
11秒前
12秒前
14秒前
15秒前
xiaosun完成签到,获得积分10
17秒前
听风完成签到,获得积分10
17秒前
17秒前
18秒前
积极以云完成签到,获得积分10
18秒前
changfox完成签到,获得积分10
18秒前
CipherSage应助cjh采纳,获得10
20秒前
xiaosun发布了新的文献求助10
21秒前
甜蜜发带完成签到 ,获得积分10
22秒前
勤恳的不二完成签到,获得积分10
22秒前
大模型应助T拐拐采纳,获得10
22秒前
li发布了新的文献求助30
23秒前
乐观小之完成签到,获得积分0
25秒前
25秒前
香蕉寒梅完成签到,获得积分10
26秒前
彭于晏应助富强民主采纳,获得10
26秒前
轻语完成签到 ,获得积分10
28秒前
研友_8DWkVZ完成签到,获得积分10
28秒前
29秒前
30秒前
31秒前
乐乐应助Luna采纳,获得10
32秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801189
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330761
捐赠科研通 3063197
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807586
科研通“疑难数据库(出版商)”最低求助积分说明 763729