已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Game Analysis and Incentive Mechanism Design for Differentially Private Cross-Silo Federated Learning

计算机科学 纳什均衡 无政府状态的代价 子对策完全均衡 趋同(经济学) 激励 潜在博弈 上传 最佳反应 博弈论 私人信息检索 计算机安全 数学优化 数理经济学 微观经济学 稳定的代价 万维网 经济 数学 货币政策 货币经济学 经济增长
作者
Wuxing Mao,Qian Ma,Guocheng Liao,Xu Chen
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 9337-9351 被引量:9
标识
DOI:10.1109/tmc.2024.3364372
摘要

Cross-silo federated learning (FL) is a distributed learning method where clients collaboratively train a global model without exchanging local data. However, recent works reveal that potential privacy leakage occurs when clients upload their local updates. Although some works have studied privacy-preserving mechanisms in FL, the selfish privacy-preserving behaviors of clients (who are usually cost-sensitive companies or organizations) are yet to be explored. In this paper, we formulate clients' privacy-preserving behaviors in cross-silo FL as a multi-stage privacy preservation game, where each stage game corresponds to one training iteration. Specifically, clients selfishly perturb their local updates in each training iteration to trade off between convergence performance and privacy loss. To analyze the game, we first derive a novel theoretical bound to characterize the impact of clients' local perturbations on the convergence of FL through analyzing the corrective effect of gradient descent in model training. With the novel convergence bound, we prove that each stage game is a potential game with a unique Nash equilibrium (NE) and the multi-stage privacy preservation game admits a unique subgame perfect Nash equilibrium (SPNE). We show that at the SPNE, the magnitude of each client's local perturbation decreases geometrically with training iterations. We then characterize the efficiency of the SPNE in terms of social cost by the price of anarchy (PoA), and show that the efficiency decreases with the number of clients in some cases. To tackle this problem, we propose a socially efficient incentive mechanism that allows monetary transfer among clients and guarantees individual rationality, budget balance, and social efficiency. To further elicit the private information from the selfish clients, we propose a truthful mechanism that achieves approximate social efficiency. Simulation results show that our proposed mechanisms are effective even when clients are highly heterogeneous, and can decrease clients' total cost by up to 58.08% compared with that at the SPNE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhongjinwei发布了新的文献求助10
6秒前
kidmoriarty发布了新的文献求助10
6秒前
ltttyy完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
10秒前
11秒前
xkg关注了科研通微信公众号
13秒前
林宇晔发布了新的文献求助10
15秒前
15秒前
闪耀的芝士蛋挞完成签到,获得积分10
15秒前
noodles发布了新的文献求助30
15秒前
17秒前
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
wanci应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
18秒前
Manphie应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
19秒前
19秒前
luster发布了新的文献求助10
20秒前
赘婿应助huang采纳,获得30
20秒前
20秒前
nk完成签到 ,获得积分10
22秒前
行走发布了新的文献求助10
22秒前
Rosie完成签到,获得积分10
22秒前
已有琦琦勿扰完成签到 ,获得积分10
23秒前
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345078
求助须知:如何正确求助?哪些是违规求助? 4480159
关于积分的说明 13945625
捐赠科研通 4377532
什么是DOI,文献DOI怎么找? 2405356
邀请新用户注册赠送积分活动 1397911
关于科研通互助平台的介绍 1370269