Multi-sensor fusion fault diagnosis method of wind turbine bearing based on adaptive convergent viewable neural networks

人工神经网络 断层(地质) 数据挖掘 计算机科学 可靠性(半导体) 传感器融合 特征学习 图形 机器学习 模式识别(心理学) 人工智能 地质学 地震学 理论计算机科学 功率(物理) 物理 量子力学
作者
Xinming Li,Yanxue Wang,Jiachi Yao,Meng Li,Zhikang Gao
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:245: 109980-109980 被引量:38
标识
DOI:10.1016/j.ress.2024.109980
摘要

Effective condition monitoring and fault diagnosis of rolling bearings, integral components of rotating machinery, are crucial for ensuring equipment reliability. However, existing diagnostic methods based on single signals perform poorly due to the detrimental effects of strong noise. Traditional deep learning approaches often neglect the interdependence between data samples when dealing with rolling bearing faults, thus constraining the accuracy and reliability of fault diagnosis. To tackle these challenges, this study introduces an intelligent diagnostic framework that integrates multi-source information at multiple levels, using acoustic and vibration signals (AVS) data and graph neural networks. Firstly, a data-level fusion method called Correlation Variance Contribution is proposed to effectively integrate vibration signals, addressing the issue of multi-source information integration. An Adaptive Convergent Viewable Graph (AcvGraph) is introduced to optimize the representation of original AVS data and fused vibration signals, improving the capturing of correlation relationships within the data and enhancing classification accuracy. Furthermore, an enhanced DiffPool method is utilized to downsample the graph-structured data, reducing feature dimensions while preserving crucial information. Finally, the framework combines and integrates feature vectors from diverse inputs to form global feature vectors, enabling the accurate classification of rolling bearing faults. Exhaustive experiments validate the effectiveness of the proposed framework in utilizing AVS data for detecting different types of faults. Additionally, rigorous comparisons with alternative intelligent diagnosis techniques substantiate the superiority and advancements of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助fighting采纳,获得10
刚刚
痴情的博超应助cloud采纳,获得30
3秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得30
5秒前
Akim应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
6秒前
冰魂应助科研通管家采纳,获得10
6秒前
6秒前
顾矜应助慵懒的树采纳,获得10
7秒前
8秒前
8秒前
SciGPT应助HHH采纳,获得10
9秒前
10秒前
QXS发布了新的文献求助10
11秒前
lll发布了新的文献求助10
13秒前
14秒前
复杂的雨寒完成签到,获得积分20
19秒前
20秒前
lindahuang发布了新的文献求助10
20秒前
20秒前
Pengh完成签到,获得积分10
22秒前
失眠醉易应助HJY采纳,获得20
22秒前
CipherSage应助gb采纳,获得10
23秒前
24秒前
慵懒的树发布了新的文献求助10
25秒前
30秒前
31秒前
31秒前
32秒前
苔藓发布了新的文献求助10
32秒前
Elio发布了新的文献求助10
32秒前
33秒前
34秒前
左旋多巴完成签到,获得积分10
34秒前
35秒前
35秒前
yangyuanhao完成签到,获得积分10
35秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839942
求助须知:如何正确求助?哪些是违规求助? 3382151
关于积分的说明 10521656
捐赠科研通 3101616
什么是DOI,文献DOI怎么找? 1708201
邀请新用户注册赠送积分活动 822278
科研通“疑难数据库(出版商)”最低求助积分说明 773223