CDPNet: a radiomic feature learning method with epigenetic application to estimating MGMT promoter methylation status in glioblastoma

胶质母细胞瘤 表观遗传学 甲基化 计算机科学 特征(语言学) 人工智能 计算生物学 癌症研究 生物 基因 遗传学 语言学 哲学
作者
Jun Guo,Fanyang Yu,MacLean P. Nasrallah,Christos Davatzikos
标识
DOI:10.1117/12.3009716
摘要

Radiomics has been widely recognized for its effectiveness in decoding tumor phenotypes through the extraction of quantitative imaging features. However, the robustness of radiomic methods to estimate clinically relevant biomarkers non-invasively remains largely untested. In this study, we propose Cascaded Data Processing Network (CDPNet), a radiomic feature learning method to predict tumor molecular status from medical images. We apply CDPNet to an epigenetic case, specifically targeting the estimation of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation from Magnetic Resonance Imaging (MRI) scans of glioblastoma patients. CDPNet has three components: 1) Principal Component Analysis (PCA), 2) Fisher Linear Discriminant (FLD), and 3) a combination of hashing and blockwise histograms. The outlined architectural framework capitalizes on PCA to reconstruct input image patches, followed by FLD to extract discriminative filter banks, and finally using binary hashing and blockwise histogram module for indexing, pooling, and feature generation. To validate the effectiveness of CDPNet, we conducted an exhaustive evaluation on a comprehensive retrospective cohort comprising 484 IDH-wildtype glioblastoma patients with pre-operative multi-parametric MRI scans (T1, T1-Gd, T2, and T2-FLAIR). The prediction of MGMT promoter methylation status was cast as a binary classification problem. The developed model underwent rigorous training via 10- fold cross-validation on a discovery cohort of 446 patients. Subsequently, the model's performance was evaluated on a distinct and previously unseen replication cohort of 38 patients. Our method achieved an accuracy of 70.11% and an area under the curve of 0.71 (95% CI: 0.65 - 0.74).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助泥嚎采纳,获得10
1秒前
1秒前
Jasper应助kk采纳,获得10
3秒前
领导范儿应助Vivian采纳,获得10
5秒前
YD发布了新的文献求助10
5秒前
6秒前
6秒前
Lin.隽完成签到,获得积分10
7秒前
无情灯泡完成签到,获得积分10
8秒前
瑶瑶完成签到,获得积分20
9秒前
包容若风完成签到 ,获得积分10
9秒前
深情无血完成签到,获得积分10
9秒前
科研婷发布了新的文献求助100
10秒前
11秒前
11秒前
monster0101发布了新的文献求助10
11秒前
凡高爱自由完成签到,获得积分10
13秒前
14秒前
宋小雅完成签到,获得积分10
14秒前
秀丽灵槐完成签到,获得积分10
14秒前
15秒前
mafukairi发布了新的文献求助10
15秒前
白天亮发布了新的文献求助10
15秒前
dingm2发布了新的文献求助10
20秒前
着急的又柔给着急的又柔的求助进行了留言
21秒前
赵文若完成签到,获得积分10
21秒前
22秒前
24秒前
Sara完成签到,获得积分10
24秒前
动听松思完成签到,获得积分20
27秒前
CZ_Xsx发布了新的文献求助20
27秒前
27秒前
28秒前
山楂发布了新的文献求助10
28秒前
zhihan发布了新的文献求助30
29秒前
张文淇发布了新的文献求助20
29秒前
Jewel_719发布了新的文献求助10
30秒前
今后应助mafukairi采纳,获得10
32秒前
Jhure完成签到,获得积分10
34秒前
PhishCellar完成签到 ,获得积分10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818608
求助须知:如何正确求助?哪些是违规求助? 3361624
关于积分的说明 10413632
捐赠科研通 3079880
什么是DOI,文献DOI怎么找? 1693398
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248