A KMP-based interactive learning approach for robot trajectory adaptation with obstacle avoidance

计算机科学 避障 弹道 机器人 人工智能 机器人末端执行器 障碍物 避碰 适应(眼睛) 任务(项目管理) 笛卡尔坐标系 人机交互 计算机视觉 移动机器人 工程类 数学 碰撞 心理学 物理 几何学 计算机安全 系统工程 天文 神经科学 政治学 法学
作者
Sa Xiao,Xuyang Chen,Yuankai Lu,Jinhua Ye,Haibin Wu
出处
期刊:Industrial Robot-an International Journal [Emerald Publishing Limited]
卷期号:51 (2): 326-339
标识
DOI:10.1108/ir-11-2023-0284
摘要

Purpose Imitation learning is a powerful tool for planning the trajectory of robotic end-effectors in Cartesian space. Present methods can adapt the trajectory to the obstacle; however, the solutions may not always satisfy users, whereas it is hard for a nonexpert user to teach the robot to avoid obstacles in time as he/she wishes through demonstrations. This paper aims to address the above problem by proposing an approach that combines human supervision with the kernelized movement primitives (KMP) model. Design/methodology/approach This approach first extracts the reference database used to train KMP from demonstrations by using Gaussian mixture model and Gaussian mixture regression. Subsequently, KMP is used to modulate the trajectory of robotic end-effectors in real time based on feedback from its interaction with humans to avoid obstacles, which benefits from a novel reference database update strategy. The user can test different obstacle avoidance trajectories in the current task until a satisfactory solution is found. Findings Experiments performed with the KUKA cobot for obstacle avoidance show that this approach can adapt the trajectories of the robotic end-effector to the user’s wishes in real time, including trajectories that the robot has already passed and has not yet passed. Simulation comparisons also show that it exhibits better performance than KMP with the original reference database update strategy. Originality/value An interactive learning approach based on KMP is proposed and verified, which not only enables users to plan the trajectory of robotic end-effectors for obstacle avoidance more conveniently and efficiently but also provides an effective idea for accomplishing interactive learning tasks under constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彪壮的茗发布了新的文献求助30
刚刚
刚刚
2秒前
orixero应助Jolin采纳,获得10
2秒前
2秒前
2秒前
Eliauk完成签到 ,获得积分10
3秒前
3秒前
你键盘哥完成签到,获得积分10
3秒前
4秒前
Akim应助雨田采纳,获得10
4秒前
豆豆发布了新的文献求助30
5秒前
如约而至发布了新的文献求助10
5秒前
yiyiluo发布了新的文献求助10
6秒前
小二郎应助唐笑采纳,获得10
7秒前
8秒前
8秒前
8秒前
熊宇完成签到,获得积分10
9秒前
Owen应助mmnn采纳,获得10
11秒前
13秒前
13秒前
14秒前
16秒前
18秒前
19秒前
19秒前
yang发布了新的文献求助10
19秒前
科研通AI5应助Angel采纳,获得10
19秒前
可靠世平发布了新的文献求助10
20秒前
AAAAA发布了新的文献求助10
20秒前
20秒前
xxx完成签到,获得积分10
20秒前
22秒前
彭于晏应助yiyiluo采纳,获得10
22秒前
艾佳发布了新的文献求助10
22秒前
22秒前
22秒前
VVValentin发布了新的文献求助10
23秒前
Jolin发布了新的文献求助10
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807102
求助须知:如何正确求助?哪些是违规求助? 3351867
关于积分的说明 10356328
捐赠科研通 3067877
什么是DOI,文献DOI怎么找? 1684778
邀请新用户注册赠送积分活动 809910
科研通“疑难数据库(出版商)”最低求助积分说明 765767