Industrial carbon emission forecasting considering external factors based on linear and machine learning models

自回归积分移动平均 平均绝对百分比误差 Lasso(编程语言) 温室气体 水准点(测量) 计算机科学 线性回归 支持向量机 自回归模型 计量经济学 时间序列 机器学习 数学 人工神经网络 地理 万维网 生物 生态学 大地测量学
作者
Ye Liang,Pei Du,Shubin Wang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:434: 140010-140010 被引量:34
标识
DOI:10.1016/j.jclepro.2023.140010
摘要

Accurate forecasting of carbon emissions has become a critical task for the government to formulate effective policies and sustainable development. However, previous studies have mainly focused on large-scale carbon emissions forecasting, while urban-level carbon emission forecasting is equally important but rarely covered. In this study, we propose a novel carbon emission forecasting framework combining linear and machine learning models that considers both time dynamics and external influences. To improve the accuracy and explanatory power of the proposed model, we first introduce twelve initial influencing factors by considering the urban development, economic development, industrial energy consumption, and demographic factors. And then Lasso regression algorithm is adopted to filter out the indicators with poor predictive power. Finally, a combined prediction model by integrating Autoregressive Integrated Moving Average (ARIMA) and Support Vector Regression (SVR) models is established to capture linear and nonlinear features, respectively. The simulation results show that compared with benchmark models, the proposed model indicates stronger prediction performance with a Mean Absolute Percentage Error (MAPE) of 0.096 and a R-squared (R2) of 97.5%. In addition, six future development scenarios, including carbon emission projections for industrial growth and environmental protection factors, are also performed in this study to provide recommendations for carbon emission reduction programmers and related policy formulation. In conclusion, the forecasting framework proposed in this research can help to identify the key factors affecting carbon dioxide emissions and provide a quantitative reference for carbon dioxide emission reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的吐司完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
1秒前
1秒前
upcdelx完成签到,获得积分10
1秒前
王家腾发布了新的文献求助10
2秒前
3秒前
共享精神应助张祖伦采纳,获得10
3秒前
王子心完成签到,获得积分20
3秒前
4秒前
4秒前
隐形曼青应助你好采纳,获得10
4秒前
111111完成签到,获得积分10
4秒前
战战兢兢完成签到,获得积分10
4秒前
研友_VZG7GZ应助武雨珍采纳,获得10
5秒前
5秒前
wy.he给Liujing2022的求助进行了留言
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Zx_1993应助天真跳跳糖采纳,获得20
6秒前
默默曼冬发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
领导范儿应助弓长广发采纳,获得10
8秒前
Miao完成签到,获得积分10
8秒前
困困魚发布了新的文献求助10
9秒前
le发布了新的文献求助10
9秒前
纯真的尔曼完成签到 ,获得积分10
10秒前
10秒前
小丸子发布了新的文献求助10
11秒前
将个烂就发布了新的文献求助10
11秒前
12秒前
小虾米完成签到,获得积分10
12秒前
13秒前
xrL完成签到,获得积分10
13秒前
14秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5241249
求助须知:如何正确求助?哪些是违规求助? 4408034
关于积分的说明 13720910
捐赠科研通 4277007
什么是DOI,文献DOI怎么找? 2346903
邀请新用户注册赠送积分活动 1344015
关于科研通互助平台的介绍 1302114