Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
隐形曼青应助哈哈Steven采纳,获得10
1秒前
fxh完成签到,获得积分10
2秒前
JieYin发布了新的文献求助10
2秒前
2秒前
lezbj99发布了新的文献求助10
2秒前
2秒前
2秒前
充电宝应助吉吉采纳,获得30
3秒前
NexusExplorer应助Wang采纳,获得10
4秒前
6秒前
阿帆发布了新的文献求助10
6秒前
李是谁啊完成签到 ,获得积分10
6秒前
dingzifw完成签到,获得积分10
7秒前
pp发布了新的文献求助10
7秒前
7秒前
Lune7完成签到 ,获得积分10
9秒前
大恐龙发布了新的文献求助10
9秒前
10秒前
10秒前
所所应助七大洋的风采纳,获得10
11秒前
黄小北发布了新的文献求助10
12秒前
我是老大应助平淡的思真采纳,获得10
14秒前
十you八九发布了新的文献求助10
16秒前
16秒前
明明发布了新的文献求助10
17秒前
大方的寒烟完成签到,获得积分10
17秒前
17秒前
麦麦发布了新的文献求助10
17秒前
20秒前
20秒前
Meyako应助积极以云采纳,获得20
22秒前
22秒前
浮光掠影发布了新的文献求助10
23秒前
黄晨雅完成签到,获得积分10
23秒前
蔡一完成签到,获得积分10
23秒前
坂井泉水发布了新的文献求助10
24秒前
edmund完成签到 ,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580110
求助须知:如何正确求助?哪些是违规求助? 3998280
关于积分的说明 12378387
捐赠科研通 3672683
什么是DOI,文献DOI怎么找? 2024040
邀请新用户注册赠送积分活动 1058143
科研通“疑难数据库(出版商)”最低求助积分说明 944885