亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology

类有机物 三维细胞培养 癌细胞 计算生物学 计算机科学 生物 细胞培养 细胞生物学 癌症 遗传学
作者
Patience Mukashyaka,Pooja Kumar,David J. Mellert,Shadae Nicholas,Javad Noorbakhsh,Mattia Brugiolo,Olga Anczuków,Edison T. Liu,Jeffrey H. Chuang
标识
DOI:10.1101/2023.03.03.531019
摘要

Three-dimensional (3D) culture models, such as organoids, are flexible systems to interrogate cellular growth and morphology, multicellular spatial architecture, and cell interactions in response to drug treatment. However, new computational methods to segment and analyze 3D models at cellular resolution with sufficiently high throughput are needed to realize these possibilities. Here we report Cellos (Cell and Organoid Segmentation), an accurate, high throughput image analysis pipeline for 3D organoid and nuclear segmentation analysis. Cellos segments organoids in 3D using classical algorithms and segments nuclei using a Stardist-3D convolutional neural network which we trained on a manually annotated dataset of 3,862 cells from 36 organoids confocally imaged at 5 μm z-resolution. To evaluate the capabilities of Cellos we then analyzed 74,450 organoids with 1.65 million cells, from multiple experiments on triple negative breast cancer organoids containing clonal mixtures with complex cisplatin sensitivities. Cellos was able to accurately distinguish ratios of distinct fluorescently labelled cell populations in organoids, with <3% deviation from the seeding ratios in each well and was effective for both fluorescently labelled nuclei and independent DAPI stained datasets. Cellos was able to recapitulate traditional luminescence-based drug response quantifications by analyzing 3D images, including parallel analysis of multiple cancer clones in the same well. Moreover, Cellos was able to identify organoid and nuclear morphology feature changes associated with treatment. Finally, Cellos enables 3D analysis of cell spatial relationships, which we used to detect ecological affinity between cancer cells beyond what arises from local cell division or organoid composition. Cellos provides powerful tools to perform high throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助嘻嘻采纳,获得10
9秒前
moiumuio完成签到,获得积分10
52秒前
syan完成签到,获得积分10
1分钟前
伏城完成签到 ,获得积分10
1分钟前
研友_850aeZ完成签到,获得积分0
1分钟前
有点鸭梨呀完成签到 ,获得积分10
1分钟前
SCIfafafafa发布了新的文献求助10
1分钟前
大个应助北雨采纳,获得10
1分钟前
1分钟前
2分钟前
Swear完成签到 ,获得积分10
2分钟前
oleskarabach发布了新的文献求助30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
舒适的映易完成签到,获得积分10
2分钟前
oleskarabach完成签到,获得积分20
2分钟前
lanlan发布了新的文献求助30
2分钟前
bkagyin应助QQ采纳,获得30
2分钟前
3分钟前
h0jian09完成签到,获得积分10
3分钟前
无语的诗柳完成签到 ,获得积分10
3分钟前
3分钟前
李爱国应助solarlad采纳,获得10
3分钟前
4分钟前
星星发布了新的文献求助10
4分钟前
4分钟前
4分钟前
科研通AI2S应助星星采纳,获得10
4分钟前
仙女完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
小二郎应助科研通管家采纳,获得10
4分钟前
科目三应助小刘采纳,获得10
4分钟前
Georgechan完成签到,获得积分10
4分钟前
顾矜应助Kunhui采纳,获得30
4分钟前
5分钟前
愉快的犀牛完成签到 ,获得积分10
5分钟前
酷波er应助Wsssss采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Implantable Technologies 500
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Theories of Human Development 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3922054
求助须知:如何正确求助?哪些是违规求助? 3466826
关于积分的说明 10945341
捐赠科研通 3195734
什么是DOI,文献DOI怎么找? 1765796
邀请新用户注册赠送积分活动 855756
科研通“疑难数据库(出版商)”最低求助积分说明 795077