气泡
纳米技术
分离压力
材料科学
纳米光刻
分子动力学
分子自组装
分子间力
稳健性(进化)
纳米
控制重构
纳米尺度
自组装
分子
计算机科学
物理
薄膜
化学
制作
机械
复合材料
生物化学
医学
嵌入式系统
病理
基因
替代医学
量子力学
作者
Zhiyuan Qu,Peng Zhou,Fanyi Min,Shengnan Chen,Mengmeng Guo,Zhandong Huang,Shiyang Ji,Yongli Yan,Xiaodong Yin,Hanqiu Jiang,Yubin Ke,Yong Sheng Zhao,Xuehai Yan,Yali Qiao,Yanlin Song
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2023-03-15
卷期号:9 (11)
被引量:11
标识
DOI:10.1126/sciadv.adf3567
摘要
Patterning is attractive for nanofabrication, electron devices, and bioengineering. However, achieving the molecular-scale patterns to meet the demands of these fields is challenging. Here, we propose a bubble-template molecular printing concept by introducing the ultrathin liquid film of bubble walls to confine the self-assembly of molecules and achieve ultrahigh-precision assembly up to 12 nanometers corresponding to the critical point toward the Newton black film limit. The disjoining pressure describing the intermolecular interaction could predict the highest precision effectively. The symmetric molecules exhibit better reconfiguration capacity and smaller preaggregates than the asymmetric ones, which are helpful in stabilizing the drainage of foam films and construct high-precision patterns. Our results confirm the robustness of the bubble template to prepare molecular-scale patterns, verify the criticality of molecular symmetry to obtain the ultimate precision, and predict the application potential of high-precision organic patterns in hierarchical self-assembly and high-sensitivity sensors.
科研通智能强力驱动
Strongly Powered by AbleSci AI