Joint segmentation and classification of skin lesions via a multi-task learning convolutional neural network

计算机科学 分割 卷积神经网络 子网 人工智能 模式识别(心理学) 编码器 深度学习 计算机网络 操作系统
作者
Xiaoyu He,Yong Wang,Shuang Zhao,Xiang Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:230: 120174-120174 被引量:12
标识
DOI:10.1016/j.eswa.2023.120174
摘要

Skin lesion segmentation and classification are two crucial and correlated tasks in computer-aided diagnosis of skin diseases. Jointly performing these two tasks can exploit their correlations to obtain performance gains, but it remains a challenging topic. In this paper, we propose an end-to-end multi-task learning convolutional neural network (MTL-CNN) for joint skin lesion segmentation and classification, and additionally introduce edge prediction as an auxiliary task. Overall, MTL-CNN includes a shared encoder, two parallel decoders for generating edge and segmentation masks, and a classification subnet. First, the shared encoder is used to extract features for three tasks (i.e., edge prediction, segmentation, and classification). Then, we propose two kinds of simple but efficient modules to exploit the benefits among these three tasks. Specifically, we design multiple edge information enhancement (EIE) modules between the encoder and the segmentation decoder, aiming at introducing the edge information from the edge decoder as strong cues to enhance the edge parts of the segmentation features. These enhanced segmentation features are sent to the segmentation decoder for better segmentation. Besides, we design multiple lesion area extraction (LAE) modules between the encoder and the classification subnet, which aim to utilize the segmentation results to filter out the distractions on the classification features. These filtered classification features are input to the classification subnet and progressively fused in a bottom-up manner for classification. A three-phase training strategy is employed to train MTL-CNN. Extensive experiments on three datasets demonstrate the superiority of MTL-CNN over state-of-the-art segmentation, classification, and other multi-task approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助Eason小川采纳,获得10
1秒前
1秒前
xingxinghan完成签到 ,获得积分10
1秒前
2秒前
3秒前
小蘑菇应助Luna采纳,获得10
3秒前
vae发布了新的文献求助10
3秒前
Xiaoxiao应助林佳欣采纳,获得10
4秒前
4秒前
zyx完成签到 ,获得积分10
4秒前
事事顺利完成签到,获得积分10
5秒前
li关闭了li文献求助
6秒前
木木三发布了新的文献求助30
7秒前
7秒前
11111111111完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
大胆的忆安完成签到 ,获得积分10
10秒前
幸福胡萝卜完成签到,获得积分10
12秒前
jj发布了新的文献求助10
12秒前
Eason小川发布了新的文献求助10
13秒前
NXK发布了新的文献求助10
15秒前
顾矜应助1dsfdcsa采纳,获得10
15秒前
风中琦完成签到 ,获得积分10
15秒前
紫色翡翠完成签到,获得积分10
16秒前
17秒前
复杂的凝冬完成签到,获得积分10
21秒前
科研通AI2S应助木木三采纳,获得10
21秒前
cldg应助木木三采纳,获得10
21秒前
NXK完成签到,获得积分20
22秒前
懒大王完成签到 ,获得积分10
22秒前
23秒前
地瓜儿完成签到,获得积分10
26秒前
46464发布了新的文献求助10
26秒前
lmy完成签到 ,获得积分10
27秒前
28秒前
顽固分子完成签到 ,获得积分10
28秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346865
关于积分的说明 10330869
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681450
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763743