Pressure aging: An effective process to liberate the power of high-pressure materials research

高压 材料科学 环境压力 聚合 纳米技术 化学物理 计算机科学 工程物理 化学 热力学 复合材料 聚合物 物理
作者
Hui Luo,Hongli Xuan,Dong Wang,Ziwan Du,Zhongyang Li,Kejun Bu,Songhao Guo,Yuhong Mao,Fujun Lan,Fuyang Liu,Yanfeng Yin,Wenming Tian,Qingyang Hu,Gang Liu,Haozhe Liu,Qiaoshi Zeng,Yang Ding,Yongping Fu,Qian Li,Shengye Jin
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (51)
标识
DOI:10.1073/pnas.2416835121
摘要

High pressure can create extreme conditions that enable the formation of novel materials and the discovery of new phenomena. However, the ability to preserve the desirable characteristics of materials obtained under high pressure has remained an elusive challenge, as the pressure-induced changes are typically reversible, except for the pressure-induced chemical reactions such as polymerization of hydrocarbons. Here, we propose the concept of “pressure aging” (PA) that enables the permanent locking-in of high-pressure structures and their associated enhanced properties in functional materials. Specifically, through the application of PA at 3.3 GPa for 24 h, the two-dimensional ferroelectric CuInP 2 S 6 exhibits a permanent change in Cu configuration after the pressure is fully released. This leads to a 2.5-fold enhancement in remanent polarization and an increase in T c from 317 K to 583 K. In contrast, the samples underwent a compression–decompression cycle but without PA showed only reversible changes in their characteristics. We elucidate the relaxation dynamics during PA using the Kohlrausch–Williams–Watts function, providing valuable insights into the temporal evolution of both structural and property changes. Furthermore, the broad applicability of PA strategy has been validated across different materials, underscoring its versatility. Notably, the pressures involved are industrially attainable, and the sample sizes are scalable. Consequently, the implementation of this impactful PA approach introduces a groundbreaking unique dimension to high-pressure research, with significant potential across various scientific domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王十贰完成签到,获得积分10
5秒前
12秒前
12秒前
科研小陈完成签到,获得积分10
16秒前
yue发布了新的文献求助10
17秒前
华仔应助kmzzy采纳,获得10
17秒前
南星完成签到 ,获得积分10
20秒前
23秒前
24秒前
葡萄完成签到,获得积分10
26秒前
林莹发布了新的文献求助30
31秒前
yyyyyingX发布了新的文献求助10
36秒前
wanci应助完美无敌采纳,获得10
38秒前
科研通AI2S应助林莹采纳,获得10
41秒前
pluto应助SWEETYXY采纳,获得10
41秒前
李爱国应助yue采纳,获得10
43秒前
情怀应助简单刺猬采纳,获得10
43秒前
44秒前
46秒前
依依完成签到 ,获得积分10
47秒前
49秒前
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
bc应助科研通管家采纳,获得30
49秒前
bc应助科研通管家采纳,获得30
49秒前
bc应助科研通管家采纳,获得30
49秒前
Akim应助科研通管家采纳,获得10
49秒前
芷荷发布了新的文献求助10
51秒前
51秒前
52秒前
完美无敌发布了新的文献求助10
52秒前
认真的汉堡完成签到,获得积分20
53秒前
乐天林完成签到 ,获得积分10
54秒前
简单刺猬发布了新的文献求助10
57秒前
57秒前
瘦瘦瘦完成签到 ,获得积分10
59秒前
1分钟前
tim完成签到,获得积分10
1分钟前
Ava应助keock采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385