Multistable Physical Neural Networks

人工神经网络 神经科学 计算机科学 心理学 人工智能
作者
Ben‐Haim Eran,Sefi Givli,Yizhar Or,Amir D. Gat
出处
期刊:Advanced intelligent systems [Wiley]
卷期号:7 (6) 被引量:2
标识
DOI:10.1002/aisy.202400694
摘要

Artificial neural networks (ANNs), which are inspired by the brain, are a central pillar in the ongoing breakthrough in artificial intelligence. In recent years, researchers have examined mechanical implementations of ANNs, denoted as physical neural networks (PNNs). PNNs offer the opportunity to view common materials and physical phenomena as networks, and to associate computational power with them. In this work, mechanical bistability is incorporated into PNNs, enabling memory and a direct link between computation and physical action. To achieve this, an interconnected network of bistable liquid‐filled chambers is considered. All possible equilibrium configurations or steady‐states are first mapped, and then their stability is examined. Building on these maps, both global and local algorithms for training multistable PNNs are implemented. These algorithms enable to systematically examine the network's capability to achieve stable output states and thus the network's ability to perform computational tasks. By incorporating PNNs and multistability, it is possible to design structures that mechanically perform tasks typically associated with electronic neural networks, while directly obtaining physical actuation. The insights gained from this study pave the way for the implementation of intelligent structures in smart tech, metamaterials, medical devices, soft robotics, and other fields.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
djbj2022发布了新的文献求助20
刚刚
2秒前
2秒前
英姑应助正直沧海采纳,获得10
2秒前
4秒前
Angie发布了新的文献求助50
5秒前
6秒前
6秒前
8秒前
8秒前
坚定芷烟发布了新的文献求助10
8秒前
8秒前
scofield发布了新的文献求助30
8秒前
科研通AI6应助青山采纳,获得10
8秒前
胡萝卜素完成签到,获得积分10
9秒前
汉堡包应助风一起采纳,获得10
9秒前
111111完成签到,获得积分10
9秒前
LBJ完成签到,获得积分10
9秒前
Sir.夏季风完成签到,获得积分10
10秒前
白鸽鸽发布了新的文献求助10
11秒前
acaismoon完成签到,获得积分10
11秒前
11秒前
wczhang1999发布了新的文献求助10
11秒前
梦自然完成签到 ,获得积分10
12秒前
华子发布了新的文献求助10
12秒前
论文降临发布了新的文献求助10
12秒前
13秒前
Sir.夏季风发布了新的文献求助10
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
zou发布了新的文献求助10
17秒前
善学以致用应助小板栗采纳,获得10
18秒前
赘婿应助ccz采纳,获得10
18秒前
飘逸的麦片完成签到,获得积分10
18秒前
zzf发布了新的文献求助10
19秒前
Dream7完成签到 ,获得积分20
19秒前
20秒前
科研通AI2S应助周防采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533277
求助须知:如何正确求助?哪些是违规求助? 4621611
关于积分的说明 14579423
捐赠科研通 4561659
什么是DOI,文献DOI怎么找? 2499488
邀请新用户注册赠送积分活动 1479305
关于科研通互助平台的介绍 1450504