BS-CP: Efficient streaming Bayesian tensor decomposition method via assumed density filtering

计算机科学 张量分解 张量(固有定义) 算法 噪音(视频) 数据挖掘 人工智能 数学 纯数学 图像(数学)
作者
Jiaqi Liu,Qiwu Wu,Lingzhi Jiang,Renjun Zhan,Xiaochuan Zhao,Husheng Wu,W.M. Tan
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (12): e0312723-e0312723
标识
DOI:10.1371/journal.pone.0312723
摘要

Tensor data is common in real-world applications, such as recommendation system and air quality monitoring. But such data is often sparse, noisy, and fast produced. CANDECOMP/PARAFAC (CP) is a popular tensor decomposition model, which is both theoretically advantageous and numerically stable. However, learning the CP model in a Bayesian framework, though promising to handle data sparsity and noise, is computationally challenging, especially with fast produced data streams. The fundamental problem addressed by the paper is mainly tackles the efficient processing of streaming tensor data. In this work, we propose BS-CP, a quick and accurate structure to dynamically update the posterior of latent factors when a new observation tensor is received. We first present the BS-CP1 algorithm, which is an efficient implementation using assumed density filtering (ADF). In addition, we propose BS-CP2 algorithm, using Gauss–Laguerre quadrature method to integrate the noise effect which shows better empirical result. We tested BS-CP1 and BS-CP2 on generic real recommendation system datasets, including Beijing-15k, Beijing-20k, MovieLens-1m and Fit Record. Compared with state-of-the-art methods, BS-CP1 achieve 31.8% and 33.3% RMSE improvement in the last two datasets, with a similar trend observed for BS-CP2. This evidence proves that our algorithm has better results on large datasets and is more suitable for real-world scenarios. Compared with most other comparison methods, our approach has demonstrated an improvement of over 10% and exhibits superior stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斗宗强者发布了新的文献求助10
刚刚
1秒前
1秒前
yinnnnn完成签到,获得积分20
3秒前
summer发布了新的文献求助10
4秒前
YooM发布了新的文献求助10
4秒前
什么鱼发布了新的文献求助10
4秒前
香飘飘发布了新的文献求助10
4秒前
烜66完成签到,获得积分10
4秒前
5秒前
复杂黑猫发布了新的文献求助10
5秒前
利乐发布了新的文献求助10
6秒前
yinnnnn发布了新的文献求助10
6秒前
FashionBoy应助jucy采纳,获得10
6秒前
7秒前
7秒前
慕青应助肥波采纳,获得10
8秒前
瑾木完成签到,获得积分10
9秒前
enen发布了新的文献求助10
10秒前
11秒前
复杂黑猫完成签到,获得积分10
12秒前
JamesPei应助ncuhxm采纳,获得10
12秒前
中中发布了新的文献求助10
13秒前
13秒前
14秒前
什么鱼完成签到,获得积分20
14秒前
飞快的以冬完成签到,获得积分20
15秒前
zgy1106发布了新的文献求助10
16秒前
16秒前
summer完成签到,获得积分10
17秒前
yeah完成签到,获得积分10
18秒前
19秒前
脑洞疼应助利乐采纳,获得10
19秒前
脑洞疼应助肥波采纳,获得10
19秒前
SUS发布了新的文献求助10
20秒前
英勇羿发布了新的文献求助10
20秒前
misalia发布了新的文献求助10
20秒前
21秒前
张大猛发布了新的文献求助10
21秒前
光合人完成签到,获得积分10
21秒前
高分求助中
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3854984
求助须知:如何正确求助?哪些是违规求助? 3397690
关于积分的说明 10603256
捐赠科研通 3119494
什么是DOI,文献DOI怎么找? 1719326
邀请新用户注册赠送积分活动 828133
科研通“疑难数据库(出版商)”最低求助积分说明 777298