A novel framework to predict transversal and shear parameters of unidirectional composites by combining experimental, numerical and machine learning methods

横向(组合学) 材料科学 复合材料 剪切(地质) 数学 数学分析
作者
Siqi Cheng,Xiaoyu Wang,Yuxuan Gao,Renlong Zhu,Yue Chen,Tao Liu
出处
期刊:Polymer Composites [Wiley]
标识
DOI:10.1002/pc.29554
摘要

Abstract This work presents a new method to predict the transversal and shear properties of unidirectional composites (UD) through combining the experimental, numerical and machine learning methods. The experimental results proved the complexity and difficulty of explaining primary factors affecting the mechanical properties of UD. The representative unit cell model was then created to generate 500 virtual samples for machine learning. The results show that the back propagation neural network model (BP) is the most suitable for predicting the mechanical properties of UD, with an accuracy of 98% within a 2% error. The minimum mean square and absolute errors are 1.09E‐3 and 1.15E‐5, respectively. It is proved that the interface has significant influences on all mechanical properties of UD and shear modulus of composite in 12 directions (G c 12 ) of UD is affected by all input parameters through the optimized BP model. Due to the wide coverage of input data, the proposed BP model is universal and can be adopted to predict transversal and shear properties of UD made from different kinds of fibers. Highlights Interface has influences on all parameters of unidirectional composites. Shear properties of unidirectional composites along 12 directions are intricated. Machine learning can predict mechanical properties of unidirectional composites. Specific samples are beneficial to improve the predicted accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
艾森豪威尔完成签到 ,获得积分10
刚刚
asdfqwer应助xingsixs采纳,获得10
1秒前
DSR完成签到,获得积分10
2秒前
3秒前
bkagyin应助张可采纳,获得10
3秒前
CipherSage应助Largequail采纳,获得10
5秒前
5秒前
ding应助yiyi采纳,获得10
6秒前
6秒前
7秒前
善学以致用应助Shirley Lv采纳,获得10
7秒前
8秒前
xx完成签到,获得积分10
9秒前
xc124完成签到,获得积分10
10秒前
彳亍而行发布了新的文献求助10
10秒前
拓跋凝海完成签到,获得积分10
10秒前
11秒前
XLC发布了新的文献求助10
11秒前
12秒前
核桃应助Nimnse采纳,获得10
16秒前
张可发布了新的文献求助10
16秒前
17秒前
XLC完成签到,获得积分20
18秒前
fwstu发布了新的文献求助30
18秒前
19秒前
20秒前
21秒前
开朗天寿发布了新的文献求助10
22秒前
小眼儿完成签到 ,获得积分10
22秒前
科研通AI2S应助安晗默采纳,获得10
23秒前
Leo_Sun完成签到,获得积分10
24秒前
Yang完成签到,获得积分10
24秒前
24秒前
25秒前
25秒前
25秒前
完美世界应助自强不息采纳,获得10
25秒前
品品完成签到 ,获得积分10
25秒前
完美世界应助ZM采纳,获得10
25秒前
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795205
求助须知:如何正确求助?哪些是违规求助? 3340212
关于积分的说明 10299164
捐赠科研通 3056777
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805246
科研通“疑难数据库(出版商)”最低求助积分说明 762409