Deep net detection and onset prediction of electrographic seizure patterns in responsive neurostimulation

神经刺激 癫痫 脑深部刺激 计算机科学 队列 人工神经网络 医学 人工智能 心理学 神经科学 内科学 刺激 疾病 帕金森病
作者
Victoria Peterson,Vasileios Kokkinos,Enzo Ferrante,Ashley Walton,Timon Merk,Amir Hadanny,Varun Saravanan,Nathaniel D. Sisterson,Naoir Zaher,Alexandra Urban,R. Mark Richardson
出处
期刊:Epilepsia [Wiley]
卷期号:64 (8): 2056-2069 被引量:4
标识
DOI:10.1111/epi.17666
摘要

Managing the progress of drug-resistant epilepsy patients implanted with the Responsive Neurostimulation (RNS) System requires the manual evaluation of hundreds of hours of intracranial recordings. The generation of these large amounts of data and the scarcity of experts' time for evaluation necessitate the development of automatic tools to detect intracranial electroencephalographic (iEEG) seizure patterns (iESPs) with expert-level accuracy. We developed an intelligent system for identifying the presence and onset time of iESPs in iEEG recordings from the RNS device.An iEEG dataset from 24 patients (36 293 recordings) recorded by the RNS System was used for training and evaluating a neural network model (iESPnet). The model was trained to identify the probability of seizure onset at each sample point of the iEEG. The reliability of the net was assessed and compared to baseline methods, including detections made by the device. iESPnet performance was measured using balanced accuracy and the F1 score for iESP detection. The prediction time was assessed via both the error and the mean absolute error. The model was evaluated following a hold-one-out strategy, and then validated in a separate cohort of 26 patients from a different medical center.iESPnet detected the presence of an iESP with a mean accuracy value of 90% and an onset time prediction error of approximately 3.4 s. There was no relationship between electrode location and prediction outcome. Model outputs were well calibrated and unbiased by the RNS detections. Validation on a separate cohort further supported iESPnet applicability in real clinical scenarios. Importantly, RNS device detections were found to be less accurate and delayed in nonresponders; therefore, tools to improve the accuracy of seizure detection are critical for increasing therapeutic efficacy.iESPnet is a reliable and accurate tool with the potential to alleviate the time-consuming manual inspection of iESPs and facilitate the evaluation of therapeutic response in RNS-implanted patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Lucas应助乐观海云采纳,获得10
3秒前
义气萝卜头完成签到 ,获得积分10
3秒前
wcj完成签到,获得积分20
5秒前
zbxc发布了新的文献求助10
6秒前
星辰大海应助坚强的严青采纳,获得10
7秒前
欣喜电源完成签到,获得积分10
7秒前
kobiy完成签到 ,获得积分10
9秒前
HEIKU应助ywhys采纳,获得10
9秒前
FashionBoy应助wcj采纳,获得10
11秒前
科研通AI5应助六月歌者采纳,获得10
11秒前
结草衔环完成签到,获得积分10
12秒前
FashionBoy应助花花的明采纳,获得10
13秒前
棉花发布了新的文献求助10
13秒前
白学长完成签到,获得积分10
14秒前
bk2020113458完成签到,获得积分10
14秒前
徐阳发布了新的文献求助10
14秒前
Jasper应助和谐的梦蕊采纳,获得10
14秒前
14秒前
wy.he应助科研通管家采纳,获得10
14秒前
wy.he应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得20
15秒前
15秒前
15秒前
海棠先雪完成签到,获得积分10
16秒前
范户晓完成签到,获得积分20
16秒前
16秒前
风落完成签到 ,获得积分10
16秒前
阿呆完成签到,获得积分10
16秒前
17秒前
18秒前
19秒前
此身越重洋完成签到,获得积分10
19秒前
LR完成签到,获得积分10
19秒前
乐观海云发布了新的文献求助10
20秒前
ywhys完成签到,获得积分10
22秒前
赟糖发布了新的文献求助10
22秒前
yao发布了新的文献求助10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793328
求助须知:如何正确求助?哪些是违规求助? 3338065
关于积分的说明 10288573
捐赠科研通 3054717
什么是DOI,文献DOI怎么找? 1676128
邀请新用户注册赠送积分活动 804144
科研通“疑难数据库(出版商)”最低求助积分说明 761757