Carotid atherosclerotic plaque segmentation in multi-weighted MRI using a two-stage neural network: advantages of training with high-resolution imaging and histology

医学 高分辨率 阶段(地层学) 颈动脉 磁共振成像 分割 生物医学工程 放射科 人工智能 心脏病学 计算机科学 遥感 生物 地质学 古生物学
作者
Ran Li,Jie Zheng,Mohamed A. Zayed,Jeffrey E. Saffitz,Pamela K. Woodard,Abhinav K. Jha
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:10 被引量:4
标识
DOI:10.3389/fcvm.2023.1127653
摘要

Introduction A reliable and automated method to segment and classify carotid artery atherosclerotic plaque components is needed to efficiently analyze multi-weighted magnetic resonance (MR) images to allow their integration into patient risk assessment for ischemic stroke. Certain plaque components such as lipid-rich necrotic core (LRNC) with hemorrhage suggest a greater likelihood of plaque rupture and stroke event. Assessment for presence and extent of LRNC could assist in directing treatment with impact upon patient outcomes. Methods To address the need to accurately determine the presence and extent of plaque components on carotid plaque MRI, we proposed a two-staged deep-learning-based approach that consists of a convolutional neural network (CNN), followed by a Bayesian neural network (BNN). The rationale for the two-stage network approach is to account for the class imbalance of vessel wall and background by providing an attention mask to the BNN. A unique feature of the network training was to use ground truth defined by both high-resolution ex vivo MRI data and histopathology. More specifically, standard resolution 1.5 T in vivo MR image sets with corresponding high resolution 3.0 T ex vivo MR image sets and histopathology image sets were used to define ground-truth segmentations. Of these, data from 7 patients was used for training and from the remaining two was used for testing the proposed method. Next, to evaluate the generalizability of the method, we tested the method with an additional standard resolution 3.0 T in vivo data set of 23 patients obtained from a different scanner. Results Our results show that the proposed method yielded accurate segmentation of carotid atherosclerotic plaque and outperforms not only manual segmentation by trained readers, who did not have access to the ex vivo or histopathology data, but also three state-of-the-art deep-learning-based segmentation methods. Further, the proposed approach outperformed a strategy where the ground truth was generated without access to the high resolution ex vivo MRI and histopathology. The accurate performance of this method was also observed in the additional 23-patient dataset from a different scanner. Conclusion In conclusion, the proposed method provides a mechanism to perform accurate segmentation of the carotid atherosclerotic plaque in multi-weighted MRI. Further, our study shows the advantages of using high-resolution imaging and histology to define ground truth for training deep-learning-based segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lovence完成签到,获得积分10
3秒前
林伟江发布了新的文献求助10
3秒前
实验室同学完成签到,获得积分10
3秒前
5秒前
6秒前
李爱国应助大方弘文采纳,获得10
6秒前
Akashi发布了新的文献求助10
6秒前
上官若男应助林伟江采纳,获得10
9秒前
gy发布了新的文献求助10
10秒前
SYLH应助认真的自行车采纳,获得10
11秒前
MurrayQ发布了新的文献求助30
11秒前
12秒前
13秒前
13秒前
14秒前
shabbow完成签到,获得积分10
14秒前
1111111111111完成签到,获得积分10
14秒前
Akashi完成签到,获得积分10
14秒前
Meidina发布了新的文献求助10
17秒前
18秒前
19秒前
九月发布了新的文献求助200
26秒前
开心每一天完成签到,获得积分10
26秒前
SYLH应助认真的自行车采纳,获得10
26秒前
ED应助dora采纳,获得10
30秒前
化学位移值完成签到 ,获得积分10
35秒前
11完成签到,获得积分10
39秒前
粗心的飞槐完成签到 ,获得积分10
39秒前
40秒前
Wei完成签到 ,获得积分10
47秒前
木南发布了新的文献求助10
47秒前
丘比特应助细节拉满采纳,获得10
51秒前
失眠呆呆鱼完成签到 ,获得积分10
52秒前
MewZero关注了科研通微信公众号
52秒前
52秒前
zyc完成签到,获得积分10
54秒前
传奇3应助gy采纳,获得10
55秒前
cdercder应助科研通管家采纳,获得10
57秒前
在水一方应助科研通管家采纳,获得10
57秒前
大个应助科研通管家采纳,获得10
57秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816980
求助须知:如何正确求助?哪些是违规求助? 3360427
关于积分的说明 10407756
捐赠科研通 3078348
什么是DOI,文献DOI怎么找? 1690731
邀请新用户注册赠送积分活动 814032
科研通“疑难数据库(出版商)”最低求助积分说明 767985