Mutually aided uncertainty incorporated dual consistency regularization with pseudo label for semi-supervised medical image segmentation

计算机科学 分割 正规化(语言学) 人工智能 一致性(知识库) 机器学习 对偶(语法数字) 半监督学习 图像分割 模式识别(心理学) 艺术 文学类
作者
Shanfu Lu,Zijian Zhang,Ziye Yan,Yiran Wang,Tingting Cheng,Rongrong Zhou,Guang Yang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:548: 126411-126411 被引量:12
标识
DOI:10.1016/j.neucom.2023.126411
摘要

Semi-supervised learning has contributed plenty to promoting computer vision tasks. Especially concerning medical images, semi-supervised image segmentation can significantly reduce the labor and time cost of labeling images. Among the existing semi-supervised methods, pseudo-labelling and consistency regularization prevail; however, the current related methods still need to achieve satisfactory results due to the poor quality of the pseudo-labels generated and needing more certainty awareness the models. To address this problem, we propose a novel method that combines pseudo-labelling with dual consistency regularization based on a high capability of uncertainty awareness. This method leverages a cycle-loss regularized to lead to a more accurate uncertainty estimate. Followed by the uncertainty estimation, the certain region with its pseudo-label is further trained in a supervised manner. In contrast, the uncertain region is used to promote the dual consistency between the student and teacher networks. The developed approach was tested on three public datasets and showed that: 1) The proposed method achieves excellent performance improvement by leveraging unlabeled data; 2) Compared with several state-of-the-art (SOTA) semi-supervised segmentation methods, ours achieved better or comparable performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于彦祖应助dingtwotwo采纳,获得10
1秒前
1秒前
BMH完成签到,获得积分10
2秒前
3秒前
lu完成签到,获得积分20
4秒前
99发布了新的文献求助10
4秒前
6秒前
华仔应助Davidjun采纳,获得30
7秒前
Hazel发布了新的文献求助40
8秒前
小王同学发布了新的文献求助10
9秒前
深情安青应助SJ采纳,获得10
10秒前
顾矜应助liaoteng采纳,获得10
10秒前
11秒前
思源应助Ayla雁翎采纳,获得10
11秒前
汉堡包应助胖哥采纳,获得10
12秒前
13秒前
科目三应助云上人采纳,获得10
15秒前
Lucas应助泽1采纳,获得10
17秒前
17秒前
小小哈发布了新的文献求助10
18秒前
ghroth发布了新的文献求助10
18秒前
18秒前
尊敬山兰发布了新的文献求助10
18秒前
18秒前
Febrine0502发布了新的文献求助10
19秒前
CodeCraft应助wz采纳,获得10
20秒前
科研通AI5应助柚子采纳,获得10
21秒前
马路完成签到 ,获得积分10
22秒前
大橙子完成签到,获得积分10
22秒前
大个应助李晓伟采纳,获得10
22秒前
Hbobo完成签到,获得积分10
22秒前
23秒前
monica完成签到,获得积分10
23秒前
24秒前
24秒前
搜集达人应助木之尹采纳,获得10
24秒前
unless完成签到,获得积分10
25秒前
hhl完成签到,获得积分10
26秒前
26秒前
左右兮完成签到,获得积分10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812715
求助须知:如何正确求助?哪些是违规求助? 3357285
关于积分的说明 10385676
捐赠科研通 3074475
什么是DOI,文献DOI怎么找? 1688802
邀请新用户注册赠送积分活动 812366
科研通“疑难数据库(出版商)”最低求助积分说明 767006